Оптика: в споре рождается истина

Создатель классической физики

Могучий аппарат ньютоновской механики, его универсальность и способность объяснить и описать широчайший круг явлений природы, особенно астрономических, оказали огромное влияние на многие области физики и химии.
Ньютон писал, что было бы желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механической модели.

Влияние взглядов Ньютона на дальнейшее развитие физики огромно. Российский физик С.И.Вавилов писал: "Ньютон заставил физику мыслить по-своему, "классически", как мы выражаемся теперь... Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе".

Оптика: в споре рождается истина

Ньютон начал интересоваться оптикой ещё в студенческие годы, его исследования в этой области были связаны со стремлением устранить недостатки оптических приборов. В своей первой работе "Новая теория света и цветов", доложенной им в Лондонском королевском обществе в 1672 г., Ньютон высказал свои взгляды о "телесности света" (корпускулярную гипотезу света).
Эта работа вызвала бурную полемику: в то время господствовали волновые представления.
Особенно яростным противником корпускулярных взглядов на природу света выступил английский естествоиспытатель, физик и архитектор Роберт Гук (1635-1703)). Отвечая Гуку, Ньютон высказал гипотезу, сочетавшую корпускулярные и волновые представления о свете. Эту гипотезу он потом развил в сочинении "Теория света и цветов", в котором он описал также свои опыт с "кольцами Ньютона" и установил периодичность световых волн.
Однако при чтении этого сочинения на заседании Лондонского королевского общества Гук выступил с притязанием на приоритет, и раздражённый Ньютон принял решение не публиковать оптических работ. Многолетние оптические исследования Ньютона были опубликованы им лишь в 1704 г. -- через год после смерти Гука -- в фундаментальном сочинении "Оптика".

Принципиальный противник необоснованных и произвольных гипотез, Ньютон начинает "Оптику" словами: "Мое намерение в этой книге - не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами". Он описал скрупулезно проведённые им эксперименты по обнаружению дисперсии света - разложения белого света с помощью призмы на отдельные компоненты, разного цвета и различной преломляемости. Ньютон показал, что дисперсия вызывает искажение в линзовых оптических системах - хроматическую аберрацию. Считая, что устранить искажение, вызываемое ею, невозможно, ученый сконструировал зеркальный телескоп.

Кроме того, Ньютон описал интерференцию света в тонких пластинках и изменение интерференционных цветов в зависимости от толщины пластинки в "кольцах Ньютона". По существу, он первым измерил длину световой волны. Он описал и свои опыты по дифракции света.

"Оптика" завершается специальным приложением "Вопросы", где Ньютон высказывает свои физические взгляды - в частности, воззрения на строение вещества, где присутствует (правда, в неявном виде) понятие атома и молекулы.
Ньютон приходит к идее иерархического строения вещества: он допускает, что "частички тел" (атомы) разделены промежутками - пустым пространством, а сами состоят из более мелких частичек, также разделённых пустым пространством и состоящих из ещё более мелких частичек, вплоть до окончательно неделимых твёрдых частичек.
Ньютон высказывает гипотезу о том, что свет может представлять собой сочетание движения материальных частиц с распространением волн эфира.

Quot;Начала" Ньютона

Вершиной научного творчества Ньютона являются "Начала" ("Математические начала натуральной философии"), в которых он обобщил результаты, полученные его предшественниками - Г. Галилеем, И. Кеплером, Р. Декартом, Х. Гюйгенсом, Дж. Борелли, Р. Гуком, Э. Галлеем, и свои собственные исследования.

Он впервые создал единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь были даны определения исходных понятий - количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы.

Формулируя понятие количества материи, Ньютон исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность он понимал как степень заполнения единицы объёма тела первичной материей.

Пространство, время, силы

Ньютон впервые рассмотрел основной метод описания любого физического воздействия через посредство силы.
Определяя понятия пространства и времени, он отделял "абсолютное неподвижное пространство" от ограниченного подвижного пространства, называя "относительным", а равномерно текущее, абсолютное, истинное время, называя "длительностью", - от относительного, кажущегося времени, служащего в качестве меры "продолжительности". Эти понятия времени и пространства легли в основу классической механики.

Затем ученый сформулировал свои знаменитые "аксиомы, или законы движения": закон инерции (открытый Галилеем, первый закон Ньютона), закон пропорциональности количества движения силе (второй закон Ньютона) и закон равенства действия и противодействия (третий закон Ньютона.). Из 2-го и 3-го законов он выводит закон сохранения количества движения для замкнутой системы.

Ньютон также рассмотрел движение тел под действием центральных сил и доказал, что траекториями таких движений являются конические сечения (эллипс, гипербола, парабола).
Он изложил своё учение о всемирном тяготении, сделал заключение, что все планеты и кометы притягиваются к Солнцу, а спутники - к планетам с силой, обратно пропорциональной квадрату расстояния, и разработал теорию движения небесных тел.

Ньютон показал, что из закона всемирного тяготения вытекают и законы Кеплера, и важнейшие отступления от них. Так, он объяснил особенности движения Луны (вариацию, попятное движение узлов и т.д.), явление прецессии и сжатие Юпитера, рассмотрел задачи притяжения сплошных масс, теории приливов и отливов, предложил теорию фигуры Земли.

В "Началах" Ньютон исследовал движение тел в сплошной среде (газе, жидкости) в зависимости от скорости их перемещения и привёл результаты своих экспериментов по изучению качания маятников в воздухе и жидкостях.
Здесь же он рассмотрел скорость распространения звука в упругих средах.
Посредством математического расчёта Ньютон доказал несостоятельность гипотезы Декарта, объяснявшего движение небесных тел с помощью представления о разнообразных вихрях в эфире, заполняющем Вселенную.
Ньютон нашёл закон охлаждения нагретого тела.
В этом же сочинении он уделил значительное внимание закону механического подобия.

Наши рекомендации