Следствия из уравнения Бернулли

1) Пусть труба переменного сечения расположена горизонтально. Пусть по трубе течет жидкость. Рассмотрим два сечения трубы площадью S1 и S2 и запишем для них уравнение Бернулли:

Следствия из уравнения Бернулли - student2.ru

Если S1 < S2, то v1 > v2 (уравнение неразрывности), а это означает, что P1 < P2. То есть, давление текущей жидкости в узких участках меньше, чем в широких.

h
2) Рассмотрим истечение жидкости из сосуда через узкое отверстие. Пусть имеется достаточно широкий цилиндрический сосуд, вблизи дна которого имеется узкое отверстие. Если сосуд заполнить жидкостью, то она будет вытекать из отверстия. При этом жидкость в сосуде и жидкость, вытекающую из отверстия можно рассматривать как единую трубку тока. Запишем уравнение Бернулли для двух сечений этой трубки. В качестве сечения 1 выберем верхний уровень жидкости в сосуде, а в качестве сечения 2 – выходное сечение отверстия. Так как площадь отверстия значительно меньше площади сосуда, то скорость жидкости в сечении 1 практически равна нулю. Кроме того, давления в сечениях 1 и 2 одинаковы и равны атмосферному давлению. Пусть высота верхнего уровня жидкости над отверстием равна h, а скорость вытекания жидкости из отверстия v. Тогда уравнение Бернулли имеет вид:

Следствия из уравнения Бернулли - student2.ru

Отсюда получаем, что скорость вытекания жидкости из отверстия равна:

Следствия из уравнения Бернулли - student2.ru

Эта формула называется формулой Торричелли.

3) Возникновение подъемной силы крыла самолета тоже является следствием уравнения Бернулли. При обтекании крыла самолета набегающим потоком воздуха на задней кромке крыла образуется завихрение, в котором воздух вращается против часовой стрелки (если крыло движется справа налево). По закону сохранения момента импульса должен возникнуть круговой поток по часовой стрелке. Такое движение воздуха возникает вокруг крыла. В результате скорость воздушного потока над крылом оказывается больше, чем под крылом. Но согласно уравнению Бернулли, там где скорость больше, давление меньше. Значит давление воздуха на нижнюю часть крыла самолета больше, чем на верхнюю. Эта разность давлений и создает подъемную силу.

Следствия из уравнения Бернулли - student2.ru Заметим еще, что на уравнении Бернулли основано действие многих технических устройств и, в частности, работа пульверизатора и карбюратора.

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

Момент импульса

В этой главе кратко рассмотрим основные вопросы, касающиеся вращательного движения твердого тела. Однако сначала рассмотрим движение материальной точки по окружности в несколько измененном виде. Пусть материальная точка массой m движется по окружности радиусом R. Пусть на точку действует сила F. Разложим силу на две составляющие: составляющую, направленную вдоль радиуса окружности и составляющую, направленную перпендикулярно радиусу, то есть по касательной к окружности. Первая составляющая силы обеспечивает центростремительное ускорение точки и ее можно назвать центростремительной силой Fц. Вторая составляющая обеспечивает тангенциальное ускорения точки и ее можно назвать тангенциальной силой Fτ. Второй закон Ньютона для тангенциальной силы запишется так:

Следствия из уравнения Бернулли - student2.ru

где аτ – тангенциальное ускорение. Но Следствия из уравнения Бернулли - student2.ru , где ε – угловое ускорение. Значит:

Следствия из уравнения Бернулли - student2.ru

Умножим обе части последнего равенства на R и заметим, что Следствия из уравнения Бернулли - student2.ru – момент силы F относительно оси вращения точки. Таким образом, получаем:

Следствия из уравнения Бернулли - student2.ru

Между поступательным и вращательным движениями можно провести аналогию. В частности, кинематическим характеристикам поступательного движения можно привести в соответствие характеристики вращательного движения. Так аналогом перемещения для поступательного движения служит угол поворота, аналогом скорости служит угловая скорость, а аналогом ускорения служит угловое ускорение. Можно пойти еще дальше и привести в соответствие динамические и энергетические характеристики поступательного и вращательного движений. Так хорошим аналогом силы при поступательном движении может служить момент силы для вращательного движения. Тогда аналогом массы при вращательном движении должна служить величина Следствия из уравнения Бернулли - student2.ru . Обозначим эту величину буквой J. Величина

Следствия из уравнения Бернулли - student2.ru

называется моментом инерции. При этом второй закон Ньютона для движения материальной точки по окружности выглядит так:

Следствия из уравнения Бернулли - student2.ru

Это уравнение по виду и по смыслу полностью соответствует второму закону Ньютона для поступательного движения материальной точки.

Теперь перейдем к вращательному движению твердого тела. Пусть имеется твердое тело, способное свободно вращаться вокруг некоторой оси. Разобьем тело (мысленно) на очень большое количество очень маленьких элементов, каждый из которых можно было бы считать материальной точкой. Пусть элемент массой mi находится на расстоянии Ri от оси вращения. Тогда его момент инерции равен Следствия из уравнения Бернулли - student2.ru . Моментом инерции тела относительно оси вращения называется сумма моментов инерции всех составляющих его элементов:

Следствия из уравнения Бернулли - student2.ru

В этом случае второй закон Ньютона для вращения твердого тела также записывается в виде (*), где М – алгебраическая сумма моментов всех сил, действующих на тело, относительно данной оси.

Определение моментов инерции тел сводится к объемному интегрированию и в общем случае является довольно сложной процедурой. Однако для многих тел простой формы моменты инерции известны. Приведем моменты инерции для некоторых тел относительно оси, проходящей через центр масс тела.

1) Момент инерции тонкого обруча массой m и радиусом R относительно оси перпендикулярной плоскости обруча равен Следствия из уравнения Бернулли - student2.ru .

2) Момент инерции однородного диска или однородного цилиндра относительно оси перпендикулярной плоскости диска или совпадающей с осью цилиндра равен Следствия из уравнения Бернулли - student2.ru .

3) Момент инерции однородного шара равен Следствия из уравнения Бернулли - student2.ru .

4) Момент инерции однородного стержня длиной l и массой m относительно оси перпендикулярной стержню равен Следствия из уравнения Бернулли - student2.ru .

Приведем без доказательства теорему Штейнера. Если J0 – момент инерции некоторого тела массой m относительно оси, проходящей через центр масс тела, то его момент инерции относительно другой оси, параллельной первой и отстоящей от нее не расстоянии а, равен:

Следствия из уравнения Бернулли - student2.ru .

Момент импульса

Запишем второй закон Ньютона для вращательного движения твердого тела:

Следствия из уравнения Бернулли - student2.ru

Угловое ускорение – это скорость изменения угловой скорости: Следствия из уравнения Бернулли - student2.ru . Значит:

Следствия из уравнения Бернулли - student2.ru

Если момент инерции теле не изменяется, то это выражение можно записать в виде:

Следствия из уравнения Бернулли - student2.ru

Второй закон Ньютона для поступательного движения тела можно записать в виде:

Следствия из уравнения Бернулли - student2.ru

Где Следствия из уравнения Бернулли - student2.ru – импульс тела. Если продолжать аналогию между поступательным и вращательным движением, то величину MΔt следует назвать импульсом момента силы, а импульсу тела поставить в соответствие величину Jω. Величина

Следствия из уравнения Бернулли - student2.ru

называется моментом импульса. Момент импульса материальной точки при ее движении по окружности равен:

Следствия из уравнения Бернулли - student2.ru

Значит, для вращательного движения второй закон Ньютона может быть записан в виде:

Следствия из уравнения Бернулли - student2.ru

Изменение момента импульса тела равно импульсу действующих на него сил. Если суммарный момент сил, действующих на тело или систему тел относительно некоторой оси равен нулю, то момент импульса тела или системы тел должен сохраняться. Этот факт называется законом сохранения момента импульса.

Кинетическая энергия вращающегося твердого тела равна

Следствия из уравнения Бернулли - student2.ru

Наши рекомендации