Неразрушающие методы и приборы
Измерения производятся различными методами: ультразвуковым, рентгенографическим, вихретоковым.
Нормативные документы
ГОСТ 30630.0.0-99 Методы испытаний на стойкость к внешним воздействующим факторам машин, приборов и других технических изделий. Общие требования
ГОСТ Р 51805-2001 Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на воздействие линейного ускорения
ГОСТ 28204-89 Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытания Ga и руководство: Линейное ускорение
ГОСТ 21616-91 Тензорезисторы. Общие технические условия
Центрифуга Ц 1/150:
Код ОКП: 42 7190 – Приборы и средства автоматизации общепромышленного назначения. Машины и приборы для измерения механических величин. Машины и приборы для определения механических свойств материалов. Принадлежности, устройства и комплектующие изделия к машинам и приборам для/определения механически. Испытания металлов.
Код ОКП: 42 7354 Машины и приборы для измерения механических величин. Приборы для измерения деформации. Тензометры.
Код ТН ВЭД: 8 421 19 200 0 – центрифуги, используемые в лабораториях.
Методы испытаний
Для различных изделий форма кривой временного значения изменения перегрузок различна. Законы перегрузок различаются по амплитуде, времени нарастания и другим характеристикам.
Особый интерес для разработчиков блоков и узлов аппаратуры представляют перегрузки, вызванные динамическими факторами.
Отличительной особенностью перегрузок является сравнительно большая длительность действия, измеряемая обычно от 1 с до нескольких десятков секунд. Однако формы импульсов разнообразны, что имеет существенное значение при выборе метода их имитации.
Особенность перегрузок группы I – быстрый фронт нарастания и спада перегрузки. Поэтому имитация законов изменения перегрузок этой группы на центрифугах представляет ряд сложностей.
Перегрузки группы II имеют вид «колоколобразного» импульса, время нарастания перегрузки и длительность всего процесса измеряются обычно десятками секунд. Максимальные значения перегрузки достигают нескольких сотен секунд.
Воспроизводить реальные кривые перегрузок группы II на обычных центрифугах невозможно, так как существующие установки предназначены для испытания изделий при постоянной угловой скорости центрифуги.
Специфические особенности кривых перегрузок (большое время их нарастания и незначительная максимальная амплитуда) позволяют рекомендовать для их воспроизведения центрифугу с регулируемой по определенному закону угловой скоростью, т. е. программную центрифугу.
Классификацию центрифуг можно проводить по следующим признакам:
• по назначению - для испытаний на линейные перегрузки (с фронтом нарастания перегрузки 0,001 – 0,1 с; с фронтом нарастания перегрузки свыше 0,1 с), для испытаний на комбинированное воздействие факторов окружающей среды;
• по типу привода - с электрическим приводом, с гидравлическим
приводом, с комбинированным приводом;
• по развиваемому линейному ускорению условно различают следующие категории: «А» - до 250 м/с2, «Б» - до 500 м/с2, «В» - до 1000 м/с2, «Г» - до 2000 м/с2, «Д» - свыше 2000 м/с2;
• по конструкции - открытого и камерного типа, с неповоротным и
поворотным столом, с ударными платформами: центрифуги с поворотными столами применяют в основном для имитации восходящего линейного участка синусоидального всплеска кривых перегрузок группы I; у центрифуг с поворотными и неповоротными столами может быть изменяющийся радиус вращения изделия;
• по грузоподъемности - малые (до 10 кг), средние (до 50 кг), тяже-
лые (до 100 кг) и сверхтяжелые (свыше 100 кг).
Основными параметрами, характеризующими центрифуги, являются
следующие:
1) максимальное линейное ускорение;
2) диапазон линейных ускорений на заданном радиусе вращения;
3) отклонение линейного ускорения от заданного значения. При линейных размерах изделия меньше 10 см не должно превышать 10%. В других случаях ускорение должно находиться в пределах -10%...+30%
заданного значения;
4) длительность (или продолжительность) воздействия линейных
ускорений в процессе испытаний. При испытаниях наиболее критично
действие во время нарастания ускорения, поэтому сама длительность
воздействия с заданным линейным ускорением может быть небольшой.
5) длительность разгона (нарастания) τн, и торможения (спада) τс;
фронта нагрузки должно удовлетворять условию
n= ≥ 100 H С τ τ ,
где n – частота вращения центрифуги, мин-1.
Структурная схема установки линейного ускорения: 1-привод, 2-редуктор, 3-средство измерений числа оборотов, 4-стол центрифуги, 5-токосъемное устройство, 6-средство измерений значений параметров испытуемых изделий, 7-измерительный прибор, 8-система автоматического управления, 9-источник питания.
Структурная схема отражает общий принцип построения установок линейного ускорения. Основным узлом центрифуги является привод 1, который совместно с редуктором 2 определяет ряд значений параметров установки. Полученное вращательное движение передается столу 4 центрифуги, обеспечивающему крепление испытуемых изделий. Для проведения испытания изделий на устойчивость, когда изделие находится под нагрузкой и с помощью средства измерений 6 осуществляют контроль его параметров, используется токосъемное устройство 5. Линейные ускорения контролируются с помощью средства измерений, состоящего из преобразователя 3 и измерительного прибора 7. Сигналы с измерительного прибора могут подводиться по цепи обратной связи к системе автоматического управления 8, поддерживающей постоянство заданных режимов испытаний путем воздействия управляющих сигналов на источник питания 9.
Рассмотрим основные конструкции применяемых центрифуг. Простейшая установка для воспроизведения линейных ускорений имеет центрифугу открытого типа. В комплект установки кроме центрифуги также входит стойка 1 с блоками управления. Стол (платформа) 3 центрифуги приводится во вращение электродвигателем 6 через редуктор 5. Стол центрифуги имеет резьбовые отверстия 4, обеспечивающие крепление изделий или приспособлений.
Столы должны обладать высокой механической прочностью и жесткостью, исключающей их вибрацию. Для уменьшения аэродинамического сопротивления плоскость стола должна быть горизонтальной. Для обеспечения испытаний изделий в рабочем состоянии под электрической нагрузкой предусмотрено токосъемное устройство, в конструкцию которого входит коллектор 2 с токоподводами, оканчивающимися штепсельными колодками. Центрифуги должны иметь приспособления для статической и динамической балансировки.
Для имитации восходящего участка и синусоидального всплеска кривых перегрузок группы I используют центрифуги с поворотными столами.
Законы перегрузок можно имитировать на специальной центрифуге, состоящей из двух инерционных тел: маховика 1 и траверсы 2. У маховика и траверсы общая вертикальная ось вращения. Маховик снабжен выдвижными упорами 5, на траверсе укреплены плоские пружины 6. Испытуемое изделие 4 устанавливается на траверсе 2. Маховик разгоняется до определенной скорости ω0, после чего из него поднимаются упоры. Последние соприкасаются с плоскими пружинами и толчком приводят траверсу во вращение. Как только угловая скорость траверсы превысит угловую скорость маховика, маховик с ней расцепляется.
Поворот платформы 3 связан с разгоном траверсы так, что ось изделия следит за равнодействующей двух ускорений: касательного ωк и центростремительного ωц.
Все параметры центрифуги рассчитывают так, чтобы обеспечить заданный закон перегрузки.
Центрифуга Ц 1/150
Конструкция центрифуги Ц 1/150
1 – кожух; 2 – коллектор; 3 – электродвигатель; 4 – прижимное устройство; 5 – стол; 6 – крышка; 7 – вал; 8 – барабан; 9 – электромагнит.
Частота вращения (мин-1) платформы центрифуги
где а - линейное (центробежное) ускорение, g; R - расстояние от оси вращения до геометрического центра изделия или его центра тяжести, см.
Испытуемое изделие помещают на столе центрифуги таким образом, чтобы разброс ускорений малогабаритного изделия относительно его центра тяжести не превышал ± 10% ускорения в центральной точке, а для изделий с габаритными размерами более 100 мм этот разброс может составлять от -10 до +30%.
Необходимо контролировать такие параметры, по изменениям которых можно судить об устойчивости к воздействию линейного ускорения изделия в целом.
Чувствительным элементом является тензодатчик КФ-5, ФКПА.
Продолжительность испытания определяется значением линейного ускорения. При испытании с ускорением до 500 g продолжительность испытания составляет 3 мин в каждом направлении, а при ускорении более 500g - 1 мин. Для установки заданного ускорения изменяют частоту вращения или расстояние R от оси вращения, перемещая испытываемое изделие вдоль оси платформы.
Рассмотрим конструкции центрифуги Ц 1 / 150. Стол 5 представляет собой диск диаметром 570 мм, закрепленный в верхней части вала 7, на которой насажены также барабан 8, выполняющий роль шкива и тормозного устройства, и коллектор 2. Вал установлен на двух подшипниках. Внутри вала проходят 24 провода, концы которых подключении к коллектору. В зажимных устройствах 4 крепят печатные платы с испытуемыми изделиями. От каждой печатной платы проложен жгут из 12 проводов, которые через штепсельный разъем соединены с проводами, идущими от коллектора. В кожухе 1 над валом есть отверстие для подключения тахометру. К нижнему валу подключают тахогенератор, который служит датчиком частоты вращения. Ротор центрифуги приводится во вращение электродвигателем 3 постоянного тока, а для его торможения служит электромагнит 9. Питание на электродвигатель подается с пульта управления, а на испытуемые изделия - от блока питания через коллектор. Доступ к столу центрифуги осуществляется через крышку 6. Коллектор также закрыт крышкой. Обе крышки имеют блокировки. Так как изделия крепятся всегда на одном и том же расстоянии от центра, ускорение зависит только от частоты вращения ротора.
Основной элемент центрифуги - следящий привод, превращающий входной сигнал (напряжение) двигателя в угловую скорость вала. Контролируя частоту n вращения в контрольной точке
Так как радиус измеряется от центра тяжести испытуемого изделия, то для изделий больших размеров и для центрифуги с малым радиусом стола линейное ускорение значительно изменяется в пределах изделия. Этим изменением, обусловленным разностью нагрузки между двумя точками, расположенными на протяжении радиуса стола центрифуги, является градиент линейного ускорения
где R1 и R2 (R2> R1) - радиусы двух контролируемых точек испытуемого изделия.
Для точного испытания больших изделий стол центрифуги должен быть большего диаметра, чем размеры испытуемого изделия.
Устройство для крепления изделия должен быть достаточно жестким и допускать проведения испытаний в трех взаимноперпендикулярных направлениях. Центры притяжения должны совпадать с центром тяжести стола.
Для измерения частоты вращения наибольшее распространение получили электронные тахометры с генератором постоянного и переменного тока, импульсные и стробоскопические. Тахометры с генератором постоянного тока используют для измерения частоты вращения с точностью ± (1 ... 5)%. Тахометры с генератором переменного тока используют для повышения точности измерений. Импульсные и стробоскопические тахометры служат для измерения больших частот вращения.
Для измерения частоты вращения применяются тахометры следующих типов: с генератором постоянного тока, с генератором переменного тока, импульсные и стробоскопические.
Тахометры с генератором постоянного тока представляют собой электрические машины небольших габаритных размеров с постоянными магнитами, получающие вращение от вала, частоту вращения которого необходимо измерить.
Среднее значение ЭДС генератора E=kФn, где k – коэффициент, определяемый конструкцией машины, Ф – магнитный поток, n – частота вращения.
При постоянном магнитном потоке среднее значение напряжения строго пропорционально частоте вращения. Напряжение измеряется вольтметром.
Тахометры с генератором переменного тока представляют собой синхронные машины небольших габаритных размеров с неподвижным якорем и вращающимся индуктором, выполненным из магнитно-твердого материала. Тахометры с генератором переменного тока используют так, чтобы частота вращения контролируемого объекта задавалась частотой генерируемого переменного тока.
Тахометры с импульсным генератором получили распространение в технике для контроля частоты вращения в быстроходных конструкциях. Датчиками являются контактные устройства – механические, индуктивные или фотоэлектрические, которые за каждый оборот или долю оборота контролируемого объекта генерируют кратковременный электрический импульс.
Для измерения частоты вращения применяеся тахометр 7ТЭ-М1. Измерение производится без механического контакта датчика с валом при наличии доступа к шестерням или другим деталям с выступами (впадинами) по окружности, установленным на валу. Тахометр состоит из: показывающего прибора; преобразователя первичного. Диапазон измерений тахометра должен быть от 2 до 99999 об/мин. Предел допускаемой погрешности выражается формулой: +(а%+М), где - а - класс точности тахометра: - М - погрешность, обусловленная дискретностью измерения (цена деления наименьшего разряда). Измеритель рассчитан на работу от сигнала отрицательной полярности любой формы или синусоидальной формы амплитудой 2 ... 50 В Чувствительность измерителя - не более 2 В в диапазоне 2 ... 40 000 Гц. Потребляемая мощность - не более 10 ВА. НТД (: ТУ 25-7416.088-86 Масса: 2 Размер: изм. - 90х167х149; преобр. - диам.16х109 Энергопитание: Измерителя 220 В, 50 Гц; преобразователя -12В.