Бесконтактные двигатели постоянного тока

бесконтактные двигатели постоянного тока - student2.ru

Двигатели постоянного тока обычного исполнения имеют ценное качество-возможность широко и плавно регулировать скорость вращения. Вместе с тем они обладают существенным недостатком, обусловленным щеточно-коллекторным узлом. Вполне естественно, что появилась мысль создать двигатели, обладающие достоинствами двигателей постоянного тока и свободные от их недостатков. Такие двигатели называются бесконтактными двигателями постоянного тока.

бесконтактные двигатели постоянного тока - student2.ru

Рис.5.1. Структурная схема бесконтактного двигателя постоянного тока


Бесконтактные двигатели постоянного тока состоят из трех элементов (рис. 5.1):

1) бесконтактного двигателя с m-фазной обмоткой на статоре и возбужденным ротором обычно в виде постоянного магнита;

2) датчика положения ротора (ДПР), выполненного в одном корпусе с двигателем и предназначенного для выработки сигналов управления моментами времени и последовательностью коммутации токов в обмотках статора;

3) коммутатора, как правило, транзисторного, осуществляющего по сигналам ДПР коммутацию токов в обмотках статора.

П р и н ц и п д е й с т в и я бесконтактного двигателя рассмотрим на примере упрощенной схемы (рис. 5.2). В ее состав входит двигатель с тремя обмотками на статоре, сдвинутыми в пространстве на 120 градусов и соединенными в звезду, ДПР с одним сигнальным элементом (СЭ) и тремя чувствительными элементами (ЧЭ) (их число равно числу обмоток статора), коммутатор, выполненный на трех транзисторах, работающих в ключевом режиме, т.е. в режиме "закрыт" или "открыт".

бесконтактные двигатели постоянного тока - student2.ru

Рис. 5.2. Упрощенная принципиальная схема бесконтактного двигателя постоянного тока

В положении, показанном на рис.5.2, сигнальный элемент через чувствительный элемент "А" открывает транзистор ТА. По обмотке А протекает ток IА. Намагничивающая сила обмотки FА взаимодействует с потоком постоянного магнита ротора. Возникает вращающий момент, и двигатель приходит во вращение (1-й такт на рис. 5.3). Вместе с ротором поворачивается и СЭ ДПР. При повороте ротора на угол чуть больший 30° СЭ будет воздействовать сразу на два ЧЭ: на "А" и на "В". Это значит, что будут открыты сразу два транзистора: ТА и ТВ. Ток будет протекать по обеим обмоткам А и В. Появится результирующая НС статора FАВ, которая повернется на 60° по сравнению с первым положением (2-й такт на рис. 5.3).

бесконтактные двигатели постоянного тока - student2.ru

Рис. 5.3. Первых 3 такта в работе бесконтактного двигателя постоян-ного тока.

Эта НС продолжает взаимодействовать с полем постоянного магнита; двигатель продолжает развивать вращающий момент.

Когда угол поворота станет чуть больше 90°, транзистор ТА закроется, ток будет проходить только по обмотке В. Поле ротора будет взаимодействовать только с НС этой обмотки, однако вращающий момент по прежнему будет воздействовать на ротор двигателя и вращать его в том же направлении (3-й такт на рис. 5.3). В конечном итоге двигатель разовьет такую скорость, при которой его момент будет уравновешиваться моментом нагрузки.

Если бы бесконтактный двигатель имел обмоток, чувствительных элементов и транзисторов столько же, сколько обычный двигатель имеет коллекторных пластин, то по своим свойствам и характеристикам они ничем бы не отличались друг от друга. Однако увеличение числа элементов сильно усложняет конструкцию машины. Поэтому в реальных двигателях число обмоток, а соответственно, и число чувствительных элементов и транзисторов не превышает 3-4.

Малое число обмоток обусловливает ряд особенностей работы бесконтактного двигателя постоянного тока.

1. Пульсация вращающего момента - возникает вследствие скачкообразного перемещения НС статора (см. положения 1,2,3 рис. 5.3). В соответствии с общими законами электромеханического преобразования энергии момент бесконтактного двигателя может быть определен как скалярное произведение магнитного потока ротора и НС взаимодействующих обмоток статора

бесконтактные двигатели постоянного тока - student2.ru (5.1)


где: см - постоянный коэффициент; q - угол между потоком ротора и НС статора.

Так как при вращении двигателя угол q непрерывно меняется, то и момент двигателя не остается постоянным.

2. Реакция якоря периодически изменяется, становясь то поперечной, то продольно намагничивающей, то продольно размагничивающей (рис. 5.4). Объясняется это опять-таки скачкообразным перемещением НС статора (якоря). Размагничивающее действие поля статора особенно сильно при пуске двигателя, т.к. при этом противо-ЭДС равна 0, а ток - наибольший. С этим необходимо считаться при выборе постоянных магнитов, стабилизация которых происходит в режиме короткого замыкания.

бесконтактные двигатели постоянного тока - student2.ru

Рис. 5.4. Реакция якоря в бесконтактном двигателе постоянного тока

3. Пульсация токов в обмотках статора и суммарного тока двигателя объясняется дискретным питанием обмоток (в тот момент, когда открыты два транзистора, потребляемый ток вырастает в два раза по сравнению с режимом, когда открыт только один транзистор).

4. Влияние индуктивности обмоток статора.В обычном двигателе секции якоря маловитковые, поскольку общее число витков якоря делится на большое число секций. Индуктивность таких секций сравнительно небольшая. В бесконтактном двигателе общее число витков якоря разбивается на 3-4 обмотки (секции). В результате секции получаются многовитковыми, а, следовательно, обладающими большой индуктивностью т.к. L~W2

С учетом ряда допущений уравнение напряжения для якоря можно записать в виде

бесконтактные двигатели постоянного тока - student2.ru (5.2)

Решая его относительно тока, получим

бесконтактные двигатели постоянного тока - student2.ru (5.3)


где Т = L/r - электромагнитная постоянная времени.

Выражение перед круглой скобкой есть ток якоря при отсутствии индуктивности. Тогда

бесконтактные двигатели постоянного тока - student2.ru (5.4)

При больших скоростях, когда время коммутации невелико, ток в обмотках не успевает достигать установившегося значения. Его эффективное значение становится меньше, чем при L = 0

Вращающий момент прямо пропорционален току якоря, поэтому

бесконтактные двигатели постоянного тока - student2.ru (5.5)


или

бесконтактные двигатели постоянного тока - student2.ru (5.6)

Анализ выражения (5.6) показывает, что момент имеет две составляющие. Первую - не зависящую от времени. Она равна моменту при отсутствии индуктивности. Вторую - переменную. Она появляется из-за индуктивности обмоток. Эта составляющая при всех скоростях имеет отрицательное значение (U > E). Поэтому можно утверждать, что, как и ток, вращающий момент бесконтактного двигателя меньше, чем вращающий момент обычного коллекторного двигателя.

Подставим значение ЭДС Е = сеnФ в формулу (5.6), получим механическую характеристику бесконтактного двигателя

бесконтактные двигатели постоянного тока - student2.ru (5.7)

Выразим эту характеристику в относительных единицах, приняв за базисный момент пусковой момент (n = 0, U = Uном), а за базисную скорость - скорость холостого хода (М = 0, U = Uном ). Время t = ¥

бесконтактные двигатели постоянного тока - student2.ru

бесконтактные двигатели постоянного тока - student2.ru

Рис. 5.6. Механические характеристики бесконтактного двигателя постоянного тока при разных значения α и L: L2 > L1 > 0

Разделим обе части уравнения (5.7) на Мп:

бесконтактные двигатели постоянного тока - student2.ru (5.8)

Обозначим a = U/Uном. С учетом n0 = U/(сеФ) получим

бесконтактные двигатели постоянного тока - student2.ru (5.9)

где n = n/n0 - относительная скорость двигателя.

На рис. 5.6 показаны механические характеристики бесконтактного двигателя при разных индуктивностях обмоток статора L. Видно, что с увеличением L нелинейность характеристик увеличивается.

Частоту вращения бесконтактных двигателей можно регулировать в широких пределах путем изменения напряжения питания.

Однако на практике чаше применяется импульсный способ, сущность которого заключается в изменении не величины постоянно подводимого напряжения, а длительности питания двигателя номинальным напряжением.

Заключение:

Постоянный электрический ток – это один из важнейших разделов физики. Постоянный электрический ток нашёл применение практически во всех отраслях, так как подавляющее большинство электронных схем в качестве питания используют постоянный ток. За последние несколько столетий была проделана большая работа в исследовании электрического тока: исследование электрических токов в металлах, вакууме и газах. Над этим работали великие учёные такие, как Х.Лоренц, П.Друде, К.Рикке, Д.Томсон, С.Л.Мандельштам, Б.Стюарт и другие. Их вклад в науку не измеримо велик.

Список используемой литературы:

1.Т.И.Трофимова - «Курс физики: учебное издание для вузов».М: издательский центр «Академия», 20007г.

2. Б.М.Яворский, Ю.А.Селезнёв «Справочное руководство по физике». Издательство «Наука», 1989г.

3.И.В.Савельев – «Курс Физики том II»,М: «Наука», 1989г.

4.Д.В.Сивухин – «Общий курс физики»,М: «Наука», 1974г.

Наши рекомендации