Вид преобразований при коллинеарных (параллельных) пространственных осях

Если ИСО K' движется относительно ИСО K с постоянной скоростью V вдоль оси x, а начала пространственных координат совпадают в начальный момент времени в обеих системах, то преобразования Лоренца (прямые) имеют вид:

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

где c — скорость света, величины со штрихами измерены в системе K', без штрихов — в K.

Эта форма преобразования (то есть при выборе коллинеарных осей), называемая иногда бустом (англ. boost) или лоренцевским бустом (особенно в англоязычной литературе), несмотря на свою простоту, включает, по сути, всё специфическое физическое содержание преобразований Лоренца, так как пространственные оси всегда можно выбрать таким образом, а при желании добавить пространственные повороты не представляет трудности (см. это в явном развёрнутом виде ниже), хотя и делает формулы более громоздкими.

  • Формулы, выражающие обратное преобразование, то есть выражающие x',y',z',t' через x,y,z,t можно получить просто заменой V на − V (абсолютная величина относительной скорости движения систем отсчёта | V | одинакова при измерении её в обеих системах отсчёта, поэтому можно при желании снабдить V штрихом, только при этом надо внимательно следить за тем, чтобы знак и определение соответствовали друг другу) и взаимной заменой штрихованных x и t с нештрихованными. Или решая систему уравнений (1) относительно x',y',z',t'.
  • Надо иметь в виду, что в литературе преобразования Лоренца часто записывается для упрощения в системе единиц, где c = 1, что действительно делает их вид более изящным.
  • Видно, что при преобразованиях Лоренца события, одновременные в одной системе отсчёта, не являются одновременными в другой (относительность одновременности), кроме того, у движущегося тела сокращается продольный размер по сравнению с тем, какой оно имеет в сопутствующей ему системе отсчёта (лоренцево сокращение), а ход движущихся часов замедляется, если наблюдать их из «неподвижной» системы отсчёта (релятивистское замедление времени).

В дифференциальной геометрии, кривизна́ — собирательное название ряда количественных характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).

Обычно кривизна определяется для каждой точки на «объекте» и выражается как значение некоторого дифференциального выражения 2-го порядка. Иногда кривизна определяется в интегральном смысле, например, как мера, такие определения используют для «объектов» пониженной гладкости. Как правило, тождественное обращение в нуль кривизны во всех точках влечёт локальное совпадение изучаемого «объекта» с «плоским» объектом.

Кривизна кривой

Пусть γ(t) — регулярная кривая в d-мерном евклидовом пространстве, параметризованная длиной. Тогда

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

называется кривизной кривой γ в точке p = γ(t), здесь Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru обозначает вторую производную по t. Вектор

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

называется вектором кривизны γ в точке p = γ(t).

Очевидно, это определение можно переписать через вектор касательной Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru :

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

где одна точка над буквой означает первую производную по t.

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

Для кривой, заданной параметрически в общем случае (параметр не обязательно является длиной), кривизна отображается формулой

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru ,

где Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru и Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru соответственно обозначают первую и вторую производную радиус-вектора γ в требуемой точке (при этом под крестом Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru для кривой в трехмерном пространстве можно понимать векторное произведение, для кривой в двумерном пространстве — псевдоскалярное произведение, а для кривой в пространстве произвольной размерности — внешнее произведение).

Для того чтобы кривая γ совпадала с некоторым отрезком прямой или со всей прямой, необходимо и достаточно, чтобы кривизна (или вектор кривизны) тождественно равнялась нулю.

Величина, обратная кривизне кривой (r = 1 / κ), называется радиусом кривизны; он совпадает с радиусом соприкасающейся окружности в данной точке кривой. Центр этой окружности называется центром кривизны.

Дина́мика (греч. δύναμις — сила) — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.

Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчета).

Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости.


Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.

Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.

С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.

В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.

Исторически деление на прямую и обратную задачу динамики сложилось следующим образом.

  • Прямая задача динамики: по заданному характеру движения определить равнодействующую сил, действующих на тело.
  • Обратная задача динамики: по заданным силам определить характер движения тела.

Законы Ньютона

Классическая динамика основана на трёх основных законах Ньютона:

  • 1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

  • 2-й: В инерциальной системе отсчета сумма всех сил, действующих на тело, равна произведению массы этого тела на векторное ускорение этого же тела (действие на тело силы, проявляется в сообщении ему ускорения).

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

В наиболее общем случае, который описывает также движение тела с изменяющейся массой (например, реактивное движение), 2-й закон Ньютона принято записывать следующим образом:

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru ,

где Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru — импульс тела. Таким образом, сила характеризует быстроту изменения импульса.

  • 3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

Вид преобразований при коллинеарных (параллельных) пространственных осях - student2.ru

Если при этом рассматриваются взаимодействующие материальные точки, то обе эти силы действуют вдоль прямой, их соединяющей. Это приводит к тому, что суммарный момент импульса системы состоящей из двух материальных точек в процессе взаимодействия остается неизменным. Таким образом, из второго и третьего законов Ньютона могут быть получены законы сохранения импульса и момента импульса

Наши рекомендации