Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации

ЛЕКЦИЯ 12

Основы расчета общей устойчивости откосов земляной плотины

Нарушение общей устойчивости низового откоса земляной плотины, представленное на рис. 12.1, сопровождается довольно сложными деструктивными процессами, к числу которых можно отнести отсутствие четко выраженной поверхности сдвига, наличие областей пластических деформаций, неодновременное нарушение прочности грунта призмы обрушения и т. п.

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru

Рис. 12. 1. Схема обрушения низового откоса плотины

Указанные процессы довольно сложны и имеют вероятностный характер, в связи с чем используют различные модели наступления предельного равновесия:

1. Локальные модели;

2. Модели повсеместного предельного равновесия.

Согласно первой модели во всех точках некоторой наиболее опасной поверхности сдвига одновременно наступает предельное равновесие, причем в этих точках удовлетворяется уравнение Кулона:

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru ,

где Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — касательное напряжение по поверхности сдвига;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — нормальные напряжения;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — угол внутреннего трения;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — удельное сцепление,

Указанные величины являются критическими, т. е. относятся к моменту предельного равновесия.

Вторая модель довольно сложна, поскольку в ней возникает множество поверхностей предельного равновесия с одновременным расползанием грунтового массива. Указанная модель несет с собой трудности при выполнении математических расчетов, а ее адекватность в виду сложности описания процесса подчас вызывает сомнение.

В практике широко используется модель локального предельного равновесия, которую применяют в следующей последовательности:

1. Действительные характеристики грунта откоса Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru и Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru мысленно снижают до критических значений, при которых откос переходит в состояние предельного равновесия;

2. Воображаемую схему предельного равновесия подвергают расчету, применяя формулу Кулона, при этом определяются критические значения характеристик грунта Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru и Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru ;

3. Вычисляют коэффициент запаса устойчивости по соотношениям:

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru .

Таким образом, задача расчета устойчивости заключается в отыскании значений Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru и Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru для множества возможных поверхностей сдвига, которые могут быть криволинейными, прямолинейными и описанными по ломанной, состоящей обычно не более трех отрезков.

Рассмотрим наиболее распространенную схему представления обрушения откосов — по круглоцилиндрическим поверхностям.

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации

Минимально возможный профиль земляной плотины представляет собой трапецию с откосами не круче 1:1,5. Вес плотины такого профиля настолько значителен, что сдвиг ее по основанию под действием горизонтальных сил невозможен. Именно поэтому нет необходимости в выполнении проверки земляной плотины на плоский сдвиг.

Неустойчивыми могут оказаться откосы сами по себе или совместно с основанием недостаточной прочности.

В 1916 г. шведские инженеры, исследуя работу морских набережных, обнаружили, что поверхности их обрушения в грунте криволинейны и могут быть приблизительно приняты цилиндрическими. В поперечном сечении поверхность обрушения представляет собой дугу круга.

При наличии гидродинамической сетки фильтрации в плотине расчет устойчивости откосов необходимо выполнять в следующей последовательности.

Рассматривается 1 п. м плотины (рис. 12.2).

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru

Рис. 12.2. К расчету устойчивости земляной плотины при наличии гидродинамической сетки фильтрационного потока

Из произвольной точки О проводится окружность радиусом r.

На любой отсек площадью Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru действуют силы:

Сила тяжести: Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru

где Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — плотность грунта естественной влажности для отсеков выше кривой депрессии; плотность грунта во взвешенном состоянии — ниже кривой депрессии.

Сила гидродинамического давления воды:

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — для отсеков ниже кривой депрессии;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru = 0 — для отсеков выше кривой депрессии.

Геометрическим сложением сил Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru и Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru находим их равнодействующую Ri, которая переносится по линии ее действия на кривую скольжения в точку М. Далее раскладываем Ri на две составляющие: Ni — нормальную к поверхности скольжения и Тi — касательную в точке М.

Сдвигающей является сила Тi, удерживающими — сила трения, вызываемая нормальной составляющей Ni, и сила сцепления для связных грунтов.

Тогда для всего массива обрушения условие равновесия будет выглядеть следующим образом:

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru , (1)

где Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — коэффициент сочетания нагрузок, для основного сочетания равен 1,0;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — коэффициент условий работы, равный 0,95;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — коэффициент надежности по ответственности сооружения.

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — момент сдвигающих сил i-ого элемента относительно точки О;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — момент удерживающих сил трения i-ого элемента по поверхности скольжения относительно точки О;

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru — момент удерживающих сил сцепления относительно точки О по всей длине поверхности скольжения;

При определении Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru и Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru необходимо также учитывать коэффициент надежности по нагрузке Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru .

Чаще всего зависимость (1) представляют следующим образом:

Проверка устойчивости грунтовой плотины по методу круглоцилиндрических поверхностей при наличии гидродинамической сетки фильтрации - student2.ru (2)

Так как центр окружности точки O взят произвольно, то и коэффициент запаса не обязательно будет минимальным, поэтому назначают несколько точек — центров окружностей и несколько радиусов r. В некоторых справочниках, например в «Справочнике гидротехника», 1955 г., разработаны рекомендации по назначению центров окружностей круглоцилиндрических поверхностей обрушения.

После выполнения серии расчетов находят минимальное значение k и в случае, если оно не удовлетворяет условию, необходимо увеличить устойчивость откосов, устроив, например, более пологие откосы.

Наши рекомендации