Расчет погрешностей косвенных измерений

Как уже указывалось, косвенные измерения физической величины определяются прямыми измерениями других физических величин, которые находятся в определенной функциональной зависимости от искомой величины. Для определения надежности результата косвенных измерений необходимо применять распределение вероятностей рассматриваемой функции. Однако, такой строгий подход во многих случаях можно заменить упрощенным.

Пусть искомая величина Х является функцией только одной переменной, т.е. Расчет погрешностей косвенных измерений - student2.ru , причем, х определяется из прямых измерений Расчет погрешностей косвенных измерений - student2.ru . При изменении х на dх произойдет изменение функции Х на dX. Применяя разложение функции Расчет погрешностей косвенных измерений - student2.ru в ряд Тейлора:

Расчет погрешностей косвенных измерений - student2.ru ,

откуда

Расчет погрешностей косвенных измерений - student2.ru

Заменяя значок дифференциала d значком ошибки D, получаем формулу для абсолютной погрешности результата косвенных измерений:

Расчет погрешностей косвенных измерений - student2.ru

Окончательный результат можно представить в виде:

Расчет погрешностей косвенных измерений - student2.ru

Относительная погрешность равна:

Расчет погрешностей косвенных измерений - student2.ru

Пусть Х является функцией нескольких переменных, т.е. X = f(x, y, z). Для каждой величины x, y, z,…мы имеем в результате прямых измерений следующие данные: Расчет погрешностей косвенных измерений - student2.ru Доверительные интервалы Dx, Dy, Dz для прямых измерений находятся методом, указанном в порядке обработки результатов прямых измерений, придерживаясь строгого правила: все доверительные интервалы Dx, Dy, Dz определяются в соответствии с табл. 2 для одного и того же значения доверительной вероятности a. Оценка доверительного интервала DC в этом случае, как это следует из теории [1, 2, 4], производится по формуле:

Расчет погрешностей косвенных измерений - student2.ru

где Расчет погрешностей косвенных измерений - student2.ru - частные производные f(x, y, z, …) по переменным x, y, z соответственно, вычисленные для их средних значений.

Частная производная функции многих переменных по одной переменной, скажем х, является обычной производной функции по х, причем все остальные переменные y, z,… считаются постоянными параметрами. Относительную ошибку величины Х легко вычислить, написав

Расчет погрешностей косвенных измерений - student2.ru

Так как Расчет погрешностей косвенных измерений - student2.ru

то для относительной погрешности получаем:

Расчет погрешностей косвенных измерений - student2.ru

Наши рекомендации