Экспериментальное подтверждение
волновых свойств микрочастиц_____________________________________________
Опыты Девиссона и Джермера___________________________________________________
Пучок электронов, рассеивающийся от естественной дифракционной решетки — кристалла никеля, дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа— Брэггов 5.50, а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле X = Н/р.
Опыты Тартаковского и Томсона________________________________________________
Наблюдалась дифракционная картина при прохождении пучка быстрых электронов (« 50 кэВ) через металлическую фольгу (толщиной » 1 мкм).
Опыты Тартаковского__________________________________________________________
Даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 104 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз
более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности.
♦ Дифракционные явления обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать движение микрочастиц в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой по формуле де Бройля.
6. 16 Плоская волна де Бройля_________________________________________________________
Согласно корпускулярно-волновому дуализму материи и гипотезе де Бройля, с движением частицы, обладающей определенны ми энергией иимпульсом, связывается плоская волна де Бройля.
Рассмотрен одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид или в комплексной записи . При записи плоской волны де Бройля учтено, что (ω — циклическая частота, k— волновое число). Показатель экспоненты в плоской волне де Бройля берется со знаком минус, но это несущественно, так как физический смысл имеет 6.22.
6. 17 Свойства волн де Бройля _____________________________________
Фазовая скорость 4.47______________________________________________
Дисперсия волн де Бройля______________________________________________________
нерелятивистский случай
Фазовая скорость, как для нерелятивистских, так и релятивистских частиц, зависит от длины волны (частоты), поскольку релятивистскийслучай
[ω — циклическая частота; k— волновое число; — постоянная Планка; Е — полная энергия частицы; р — импульс частицы; υ — скорость движения частицы; с — скорость распространения света в вакууме; т — масса частицы]