Лекция 19 Особенности современных систем отопления 2 страница
Размещение стояков — соединительных труб между магистралями и подводками — зависит от положения магистралей и размещения подводок к отопительным приборам. Обязательным является обособление стояков для отопления лестничных клеток, а также расположение стояков в наружных углах помещений. При размещении остальных стояков исходят из необходимости сокращать их число, длину и диаметр труб для экономии металла.
Кроме того, конструкция стояков должна способствовать унификации деталей для индустриализации процесса заготовки и уменьшения трудоемкости монтажа системы отопления.
Задача размещения стояков неотделима от выбора вида системы отопления для конкретного здания. В общем однотрубные системы при выполнении перечисленных рекомендаций имеют преимущество перед двухтрубными.
Стояки, как и отопительные приборы, располагают преимущественно у наружных стен открыто (на расстоянии 35мм от поверхности стен до оси труб D у £ 32мм) либо скрыто в бороздах стен или массиве стен и перегородок (см. рис. 5.3, б). При скрытой прокладке теплопроводов в наружных стенах теплопотери больше, чем при открытой прокладке, поэтому обычно принимаются меры для уменьшения теплопотерь.
Двухтрубные стояки размещают на расстоянии 80мм между осями труб, причем подающие стояки располагаютсправа (при взгляде из помещения). В местах пересечения стояков и подводок огибающие скобы устраивают на стояках (а не на подводках), причем изгиб обращают в сторону помещения.
Компенсация удлинения стояков в малоэтажных зданиях обеспечивается естественными их изгибами в местах присоединения к подающим магистралям (рис. 5.4, а). В более высоких 4—7-этажных зданиях однотрубные стояки изгибают не только в местах присоединения к подающей, но и к обратной магистрали (рис. 5.4, б, г).
В зданиях, имеющих более семи этажей, таких изгибов труб недостаточно и для компенсации удлинения средней части стояков применяют дополнительные изгибы труб с относом отопительных приборов от оси стояка (рис. 5.4, б). Иногда используют П-образные компенсаторы, и тогда трубы между компенсаторами в отдельных точках закрепляют — устанавливают неподвижные опоры. Для компенсации удлинения каждого этажестояка в однотрубных системах используют изгибы труб с «плечом» при низкотемпературной воде не менее 200мм (см. рис. 5.3, а).
В местах пересечения междуэтажных перекрытий трубы заключают в гильзы для обеспечения свободного их движения.
Горизонтальные однотрубные ветви — распределительные поэтажные трубы систем водяного отопления, промежуточные между стояками и подводками,— размещают под отопительными приборами у пола на таком же расстоянии от поверхности стен, как и стояки, и без уклона, если обеспечена скорость движения воды в них более 0,25 м/с. Возможна также прокладка горизонтальных поэтажных ветвей под окнами выше отопительных приборов. При этом нет необходимости устанавливать воздуховыпускные краны на приборах, однако усложняется опорожнение приборов и системы.
Размещение магистрали — соединительной трубы между местным тепловым пунктом и стояками — зависит от назначения и ширины здания, вида принятой системы отопления.
Рис. 5.4. Схемы присоединения стояков к магистралям систем водяного отопления двух-трехэтажных (а), четырех-семиэтажных при верхней разводке (б)и нижнейразводке (а), восьмиэтажных и более высоких (в) зданий
1 — спускной кран (внизу — со штуцером); 2 — запорный кран; 3 — запорный вентиль
В производственных зданиях магистрали целесообразно прокладывать в пределах рабочих помещений (если этому не препятствует технология производства) — по стенам, колоннам под потолком, в средней зоне или у пола. В необходимых по технологии и конструкции здания случаях магистрали выносят в технические этажи и подпольные каналы.
В малоэтажных производственных зданиях рационально применять горизонтальную однотрубную систему водяного отопления (обычную или бифилярную), когда в одной ветви совмещаются функции не только подводки и стояка, но и магистрали.
В гражданских зданиях шириной до 9м магистрали можно прокладывать вдоль их продольной оси (если не предусматривается пофасадное регулирование работы системы): одна магистраль для стояков у противоположных сторон узкого здания не вызывает перерасхода труб при соединении ее с каждым стояком (рис. 5.5, а). Так же размещают магистрали при стояках, находящихся у внутренних стен здания. В гражданских зданиях шириной более 9м рационально использовать две разводящие магистрали — вдоль каждой фасадной стены. При этом не только сокращается протяженность труб, но и становится возможным эксплуатационное регулирование теплоподачи отдельно для каждой стороны здания — пофасадное регулирование (рис. 5.5, б).
Магистрали систем отопления гражданских зданий и вспомогательных зданий промышленных предприятий размещают, как правило, в чердачных и технических помещениях. В чердачных помещениях магистрали подвешивают на расстоянии 1—1,5 м от наружных стен (рис. 5.5, б, в) для удобства монтажа и ремонта, а также для обеспечения при изгибе стояков естественной компенсации их удлинения. В подвальных помещениях, в технических этажах и подпольях, а также рабочих помещениях магистрали для экономии места укрепляют на стенах (см. рис. 5.5). В северной строительно-климатической зоне прокладка магистралей в чердачных помещениях и проветриваемых подпольях зданий не допускается.
Рис. 5.5. Размещение магистралей систем отопления в чердачных (слева), подвальных и технических (справа) помещениях зданий шириной 9м (а), шириной более 9м при тупиковом (б) и попутном (в) движении теплоносителя в трубах
При проектировании систем отопления многоэтажных жилых домов (девять этажей и более), состоящих из одинаковых повторяющихся секций, применяют посекционную разводку магистралей с тупиковым движением в них теплоносителя. В рядовых и торцевых секциях создают самостоятельные системы отопления, что обеспечивает унификацию трубных заготовок не только стояков, но и магистралей. Это особенно важно для индустриализации заготовительных работ и упрощает повторное проектирование при массовом блок-секционном строительстве зданий. Однако при этом увеличиваются число тепловых пунктов и длина транзитных магистралей, затрудняется пофасадное регулирование. От слишком мелкого деления систем отказываются при автоматизации их работы.
В гражданских зданиях повышенной этажности (особенно в высотных) магистрали систем отопления размещают вместе с инженерным оборудованием других видов на специальных технических этажах.
При размещении магистралей требуется обеспечивать свободный доступ к ним для осмотра, ремонта и замены в процессе эксплуатации систем отопления, а также компенсацию температурных деформаций.
Компенсация удлинения магистралей выполняется, прежде всего, естественными их изгибами, связанными с планировкой здания, и только прямые магистрали значительной длины, особенно при высокотемпературном теплоносителе, снабжают П-образными компенсаторами. При проектировании компенсаторов неподвижные опоры размещают таким образом, чтобы тепловое удлинение участков магистралей между опорами не превышало 50мм. Расстояние между промежуточными подвижными опорами выбирают исходя из предельного напряжения на изгиб 25 МПа, возникающего в металле трубы при просадке одной из опор.
Уклон теплопроводов. Магистрали систем водяного и парового отопления редко прокладывают строго горизонтально — только в тех случаях, когда это необходимо по местным условиям, обеспечивая повышенную скорость движения теплоносителя. Как правило, трубы монтируют с отклонением от горизонтали — уклоном.
В системах водяного отопления уклон горизонтальных магистралей необходим для отвода в процессе эксплуатации скоплений воздуха (в верхней части систем), а также для самотечного спуска воды из труб (в нижней их части).
Строго горизонтальная прокладка магистралейDy>50 мм, как и ветвей горизонтальных систем, допустима при скорости движения воды более 0,25 м/с (для уноса скоплений воздуха).
Магистрали верхней разводки рекомендуется монтировать с уклоном против направления движения воды (рис. 5.6, б) для того, чтобы использовать подъемную силу совместно с силой течения воды для удаления воздуха. В гравитационных системах допускается прокладка магистралей с уклоном по движению воды (рис. 5.6, б). Подобная прокладка в насосных системах возможна только при значительном уклоне труб, когда подъемная сила, действующая на пузырьки воздуха, будет преобладать над силой сопротивления всплыванию.
Нижние магистрали всегда прокладывают с уклоном в сторону теплового пункта здания, где при опорожнении системы вода спускается в канализацию. При этом, если магистралей две (подающая и обратная), то рационально для удобства крепления при монтаже придавать им уклон в одном и том же направлении.
В системах парового отопления уклон горизонтальных магистралей необходим для самотечного удаления конденсата как при эксплуатации, так и при опорожнении систем.
Паропроводы рекомендуется прокладывать с уклоном по направлению движения пара для обеспечения самотечного движения попутного конденсата, образующегося вследствие теплопотерь через стенки труб (рис. 5.6, г). Встречное движение пара и конденсата в одной и той же трубе сопровождается шумом и гидравлическими ударами. Поэтому уклон паропроводов против направления движения пара (рис. 5.6, в) нежелателен и допустим в исключительных случаях.
Самотечные конденсатопроводы, естественно, имеют уклон в сторону стока конденсата. Напорным конденсатопроводам уклон придается в произвольном направлении лишь для спуска конденсата при опорожнении труб.
Рекомендуемый нормальный уклон магистралей: водяных в насосных системах, паровых и напорных конденсатных 0,003 (3мм на 1м длины труб), хотя в необходимом случае уклон может быть уменьшен до 0,002. Минимальный уклон водяных подающих магистралей гравитационных систем, самотечных конденсатных магистралей 0,005, паропроводов, имеющих уклон против движения пара, 0,006, водяных магистралей верхней разводки насосных систем с уклоном по движению воды 0,01 (10 мм/м).
Рис 5.6. Направление движения теплоносителя и уклон труб в системах отопления
а и б — рекомендуемые и допустимые для водяных магистралей верхней разводки г и в — рекомендуемые и допустимые для паропроводов
5.3. Присоединение теплопроводов к отопительным приборам
Присоединение теплопроводов к отопительным приборам может быть с одной стороны (одностороннее) и с противоположных сторон приборов (разностороннее). При разностороннем присоединении возрастает коэффициент теплопередачи приборов. Однако конструктивно рациональнее устраивать одностороннее присоединение и его в первую очередь применяют на практике (см. схемы 1 и 3 на рис. 4.17).
Рис. 5.7. Одностороннее присоединение труб к отопительным приборам вертикальных систем отопления однотрубных (а—в), двухтрубных (г)
1 - отопительные приборы, 2 — однотрубные стояки 3 — осевой замыкающий участок 4 — осевой обходной участок, 5 и 6 — подающая и обратная трубы двух трубного стояка, 7 — смещенный обходной участок 8 — смещенный замыкающий участок
На рис. 5.7 изображены основные приборные узлы трех типов, применяемые в вертикальных однотрубных системах водяного отопления, и приборный узел, используемый в двухтрубных системах водяного и парового отопления. Все приборные узлы показаны с односторонним присоединением теплопроводов к приборам.
В приборном узле первого типа (рис. 5.7, а), называемом проточным (поэтому и стояк с такими узлами называют проточным), отсутствует кран для регулирования расхода теплоносителя. Проточные приборные узлы, наиболее простые по конструкции, устраивают не только в случае, когда не требуется индивидуальное регулирование теплоотдачи приборов, но и при применении конвекторов с кожухом типа К.Н, имеющих воздушные клапаны для такого регулирования. Проточные приборные узлы характеризуются тем, что расход теплоносителя в каждом приборе стояка равен его расходу в стояке в целом.
В приборных узлах второго типа (рис. 5 7, б), называемых узлами с замыкающими участками, на подводках со стороны входа теплоносителя помещаются проходные регулирующие краны (КРП). В таких узлах часть общего расхода теплоносителя в стояке минует приборы: вода постоянно протекает через замыкающие участки. Замыкающие участки могут располагаться по оси стояка, и тогда они именуютсяосевыми (см. на рис. 5.7, б сверху), а также смещение по отношению к оси стояка, называясьсмещенными (см. на рис. 5.7, б внизу). Для приборных узлов с замыкающими участками характерно, что расход теплоносителя в приборах всегда меньше общего расхода теплоносителя в стояках, а расход теплоносителя в замыкающих участках может возрастать до максимального по мере закрывания (при регулировании) крана КРП.
Приборные узлы третьего типа (рис. 5.7, б) с трехходовыми регулирующими кранами (КРТ) и обходными участками (также осевыми или смещенными) носят название проточно-регулируемых. Их особенностью является обеспечение полного протекания теплоносителя из стояка в каждый отопительный прибор (как в проточных узлах). В этих — расчетных — условиях обходные участки полностью перекрываются кранами КРТ. Вместе с тем в процессе эксплуатации можно уменьшать расход теплоносителя в каждом отдельном отопительном приборе (как в узлах с замыкающими участками), перепуская теплоноситель через обходной участок при помощи крана КРТ (вплоть до полного отключения прибора).
Таким образом, в проточно-регулируемых узлах сочетаются достоинства узлов двух других типов — и проточного, и с замыкающим участком.
Приборные узлы с односторонним присоединением труб применяют как в вертикальных, так и горизонтальных однотрубных системах водяного отопления. В горизонтальных однотрубных ветвях чаще используют проточные узлы и узлы с замыкающими участками и кранами КРП.
В двухтрубных стояках систем водяного и парового отопления каждый отопительный прибор присоединяют отдельно к подающей и обратной трубам (рис. 5.7, г). По подающей трубе подводится горячая вода или пар, по обратной — отводится охлажденная вода или конденсат от приборов.
В приборных узлах двухтрубных стояков для регулирования количества теплоносителя используют при водяном отоплении краны двойной регулировки (КРД), а при паровом отоплении — вместо кранов КРД паровые вентили.
Рис. 5.8. Унифицированное присоединение труб к отопительным приборам вертикальных систем отопления однотрубных (а и б), двухтрубных (в) и в «сцепке» двух приборов (г)
1 — смещенный обходной участок; 2 — кран КРТ; 3 — смещенный замыкающий участок: 4 — кран КРП, 5 — кран КРД
Рис. 5.9. Разностороннее присоединение труб к отопительным приборам при движении теплоносителя в приборах сверху вниз
а и б — в обратную магистраль под прибором и над прибором; в — в секционном радиаторе значительной длины г — в «сцепке» трех приборов. 1 — патрубок с пробкой; 2 — кран КРД
При вертикальных однотрубных стояках с односторонним присоединением труб к приборам можно принять единую длину подводок (рис. 5.8, а, б) и короткие подводки (l<500мм) выполнять горизонтальными (без уклона). Эта так называемая унификация приборного узла со смещенным от оси стояка обходным участком и краном КРТ (рис. 5.8, а) или также со смещенным замыкающим участком и краном КРП (рис. 5.8, б) способствует организации потока при заготовке и сборке его деталей на заводах, что повышает производительность труда.
Для повышения заводской готовности приборных узлов разработан четырехходовой стальной панельный радиатор типа РСГ-2к со встроенным краном КРП и отформованным в панели замыкающим участком. Замыкающий участок сделан так, чтобы через прибор протекало не менее половины общего расхода воды в стояке.
Рис. 5.10. Присоединение труб к отопительным приборам систем водяного отопления
а — к горизонтальной однотрубной ветви; б и в — к верхним приборам в стояках с нижним расположением магистралей соответственно двухтрубном и однотрубном; г и д — при деаэрированной воде соответственно в однотрубном стояке (верхние приборы) и горизонтальной однотрубной ветви, 1 — осевой замыкающий участок, 2 — кран КРП; 3 — воздушный кран, 4 — кран КРД, 5 — кран КРТ, 6 — смещенный обходной участок, 7 — редуцирующая вставка
При двухтрубных стояках рациональна длина подводок к приборам, не превышающая 1,25м (рис. 5.8, б). При большем расстоянии от стояка до приборов в обычных случаях целесообразно устанавливать дополнительный стояк. Уклоны подающей и обратной подводок к приборам предусматривают в сторону движения теплоносителя (см. рис. 5.8, б); их принимают равными 5—10 мм на всю длину подводки.
При одностороннем присоединении труб не рекомендуется чрезмерно укрупнять чугунные радиаторы — группировать более 25 секций (15 в системах с естественным движением воды) в один прибор, а также соединять на «сцепке» (рис. 5.8, г) более двух радиаторов.
Разностороннее присоединение труб к прибору применяют в тех частных случаях, когда горизонтальная обратная магистраль или конденсатопровод системы находится непосредственно под прибором (рис. 5.9, а) или когда прибор устанавливают ниже магистралей (рис. 5.9, б), а также при вынужденной установке крупного прибора (рис. 5.9, г) или соединении нескольких (более двух) приборов на «сцепке» (рис. 5.9, г).
Соединение отопительных приборов на «сцепке» делают в пределах одного помещения или в том случае, когда последующий прибор предназначают для нерегулируемого отопления второстепенного помещения (коридора, уборной и т. п.). «Сцепку» приборов применяют также в ветвях горизонтальной однотрубной системы.
Движение теплоносителя воды в приборах однотрубных стояков возможно сверху вниз и снизу вверх, причем в последнем случае замыкающие участки смещают, как правило, от оси стояков (см. рис. 5.8, б) для увеличения количества воды, протекающей через приборы. Кроме того, при смещенных замыкающих или обходных (см. рис. 5.8, а) участках удлинение нагревающихся труб воспринимается изогнутыми участками однотрубных стояков в пределах каждого этажа без применения специальных компенсаторов.
В приборах двухтрубных стояков чаще всего предусматривают движение теплоносителя по схеме сверху—вниз (см. рис. 5.8, б).
Присоединение труб к прибору, создающее движение воды в нем по схеме снизу—вниз, характерно для горизонтальной однотрубной системы (рис. 5.10, а). Так же присоединяют верхние приборы вертикальных систем отопления с нижним расположением обеих магистралей. Если в двухтрубных стояках с местным удалением воздуха из приборов (рис. 5.10, б) так поступают почти всегда, то в однотрубных стояках (рис. 5.10, б) — только при местных котельных (при наполнении и подпитке системы холодной водой из водопровода, содержащей значительное количество растворенного воздуха). При наполнении и подпитке системы обезвоздушенной водой из наружной теплофикационной сети («деаэрированной» водой) для присоединения верхних приборов в однотрубных стояках применяют унифицированные приборные узлы (рис. 5.10, г) с односторонним подключением труб.
При использовании деаэрированной воды в горизонтальной однотрубной системе возможно применение схемы движения воды в приборах сверху—вниз и «обвязки» приборов с замыкающим участком постоянной длины, включающим диафрагму (рис. 5.10, д),—так называемой редуцирующей вставкой.
Применение высокотемпературной воды не отражается на схеме присоединения труб к приборам, но влияет на вид запорно-регулирующей арматуры и материала, уплотняющего места соединения арматуры и приборов с трубами.
Уже известно, что направление и скорость движения теплоносителя воды в вертикальном отопительном приборе отражаются на его теплопередаче. Еще раз отметим теплотехнически целесообразные схемы движения теплоносителя воды: сверху—вниз в радиаторах однотрубных и двухтрубных систем, наряду с этим — движение снизу—вниз в секционных радиаторах однотрубных систем при значительном расходе воды. Направление движения воды в приборе снизу—вверх характеризуется наименьшей теплопередачей. Для повышения скорости рекомендуется обеспечивать последовательное движение теплоносителя в радиаторах и конвекторах, гладких и ребристых трубах, устанавливаемых в несколько рядов и ярусов (из верхнего яруса в нижний).
5.4. Размещение запорно-регулирующей арматуры
Ручную запорно-регулирующую арматуру систем центрального отопления подразделяют на муфтовую и фланцевую.
Муфтовую арматуру (с внутренней резьбой на концах для соединения с трубами) устанавливают на трубах малого диаметра (Dy £40мм), фланцевую арматуру (с фланцами на концах) — на трубах большого диаметра (при Dy>50мм).
Арматура на подводках к приборам систем водяного отопления различна: при двухтрубных стояках применяют краны, обладающие повышенным гидравлическим сопротивлением, при однотрубных стояках — пониженным сопротивлением протеканию теплоносителя. В первом случае повышение гидравлического сопротивления кранов делается для равномерности распределения теплоносителя воды по отопительным приборам. Во втором понижение сопротивления способствует затеканию в приборы большего количества воды, что повышает среднюю температуру теплоносителя в них и, следовательно, обеспечивает уменьшение их площади.
Регулирующую арматуру на подводках к приборам устанавливают не всегда. Ее не применяют во вспомогательных помещениях и в лестничных клетках зданий, близ ворот и загрузочных проемов, люков и прочих мест, опасных в отношении замерзания воды в трубах и приборах. Арматура у приборов для эксплуатационного регулирования не нужна, если предусмотрено регулирование температуры подаваемого в помещения вентиляционного воздуха.
Уприборовдвухтрубных систем водяного отопленияустанавливают краны двойной регулировки. В малоэтажных зданиях применяют обычные краны двойной регулировки, в многоэтажных —дроссельные краны повышенного гидравлического сопротивления.
Распространенные ранее краны двойной регулировки с полой пробкой обладали существенными недостатками: сравнительно малым сопротивлением и нерациональной (круто изогнутой) «кривой дросселирования». Малая «глубина» дросселирования не позволяла осуществлять этими кранами эффективного пуско-наладочного (после окончания монтажных работ) регулирования распределения воды по приборам — «первую регулировку». Пробка через короткий промежуток времени после установки нового крана «прикипала» к корпусу, что практически исключало «вторую регулировку» — эксплуатационное пользование кранами.
В настоящее время выпускаются краны двойной регулировки типа КРДШ (рис. 5.11) двух размеров (Dy=15 и 20). Они рассчитаны на условное давление 1 МПа и температуру регулируемой среды (воды) до 150 °С. Коэффициент местного сопротивления этих кранов от 5 до 14. Краны имеют поворотную на 90° втулку для монтажной регулировки (путем частичного изменения площади проходного отверстия) и шибер, вертикальное перемещение которого по пазу во втулке обеспечивает по мере надобности эксплуатационную (потребительскую) регулировку.
Применявшиеся краны повышенного гидравлического сопротивления типа «Термис» (рис. 5.12) с восемью возможными положениями клапана для монтажной регулировки не имеют недостатков кранов с полой пробкой. Возрастание величины дросселирования у них пропорционально степени закрытия отверстия для протекания воды; эти краны вентильного типа долго сохраняют работоспособность.
Монтажная регулировка, проводимая вручную перед сдачей системы отопления в эксплуатацию, требует значительных затрат времени опытных наладчиков. С тем чтобы избежать проведения монтажной регулировки двухтрубных систем, применяют регулирующие краны" повышенного гидравлического сопротивления с дросселирующим устройством. В таких кранах (рис. 5.13) имеется дросселирующая диафрагма с заранее выбранным диаметром отверстия, единым для всей конкретной системы отопления. Диафрагма сочетается в кранах с клапаном вентильного типа, причем клапан на конце снабжен иглой для прочистки диафрагмы. Калиброванная конусная диафрагма (диаметром 3—6 мм), расположенная в седле корпуса вентиля Dy=15, создает сопротивление протеканию воды, достаточное для требуемого ее распределения между приборами системы отопления. Игольчатый клапан кроме прочистки диафрагмы обеспечивает потребительскую регулировку теплоотдачи прибора, а также может плотно закрывать кран.
Рис. 5.11. Кран двойной регулировки шиберныи типа КРДШ
1 — корпус; 2 — регулировочное окно, 3 — шибер; 4 — поворотная втулка; 5— прокладка; 6 — закрепительная гайка; 7 - риска на втулке; 8 — гайка сальника; 9 — крышка; 10 — винт; 11 — ручка; 12 — резьбовой шпиндель; 13 — сальниковое уплотнение; 14 — паз во втулке
Рис. 5.12. Кран двойной регулировки типа «Термис»
1 — патрубок с наружной резьбой; 2 — соединительная гайка; 3 — клапан, 4 — корпус, 5 — гайка крышки; 6 — набивка; 7 —крышка, 8 — гайка уплотнителя шпинделя; 9 — шпиндель; 10 — винт,11 — маховик
Рис. 5.13. Кран регулирующий с дросселирующим устройством
1 — сборка корпуса муфтового запорного вентиля Dy 15 с шпинделем, крышкой, накидной гайкой и рукояткой; 2 — калиброванная диафрагма; 3 — запорно-регулирующий клапан
Рис. 5.14. Кран регулирующий трехходовой типа КРТП
1 — корпус; 2 — заслонка; 3 — крышка; 4 — прокладки; 5 — гайка сальника; 6 — рукоятка; 7 — крышка-указатель; 8 — винт в шайбой: 9 — сальниковое уплотнение
У приборов однотрубных системводяного отопленияустанавливают, как известно, два вида кранов — краны КРП и КРТ. Если приборные узлы делаются с постоянно проточными замыкающими участками (см. рис. 5.7, б), то применяются проходные краны КРП. Такие краны выпускаются двух размеров (Dy=15 и 20) и типов: шиберные краны типа КРПШ и краны с поворотной плоской заслонкой.
Рис. 5. 15. Регулирование расхода воды в отопительном приборе трехходовым краном а — вода из однотрубного стояка полностью протекает в прибор через подводку (заслонка в кране закрывает обходной участок); б — вода частично затекает в прибор; в — вода обходит прибор (заслонка закрывает подводку), протекает полностью в обходной участок и далее в стояк;
1 — однотрубный стояк; 2 — обходной участок; 3 — подводка; 4 — заслонка
Шиберные краны типа КРПШ схожи с кранами типа КРДШ (см. рис. 5.11), но не имеют втулки для монтажной регулировки (не нужной для приборов однотрубных систем отопления). Краны рассчитаны на условное давление 1 МПа (10 кгс/см2) и температуру регулируемой среды (воды) до 150 °С. Коэффициент местного сопротивления кранов — 2,5—3,0. Конструкция кранов допускает их правое и левое исполнение.
Если приборные узлы делаются с обходными участками (см. рис. 5.7, в), предназначенными для периодического использования при частичном или полном выключении приборов, то применяются трехходовые краны КРТ.
Краны типа КРТП (рис. 5.14) выпускаются двух размеров (Dyl5 и 20) для применения в тех же условиях, как и краны КРДШ и КРПШ. Краны типа КРТП универсальны по конструкции — они могут устанавливаться на верхних и нижних подводках, с подачей теплоносителя справа и слева (краны собираются для подачи теплоносителя справа, но легко могут быть перемонтированы для подачи воды слева).
Заслонка крана может занимать различное положение (определяется при снятой рукоятке по срезу — лыске на торце шпинделя заслонки) и регулировать количество воды, протекающей через отопительный прибор. На рис. 5.15 представлена схема действия трехходового крана при Движении воды по однотрубному стояку снизу вверх. Если заслонка закрывает отверстие в кране, обращенное к обходному участку (рис. 5.15, а), то вода из стояка целиком протекает в подводку и далее через прибор. Это положение заслонки соответствует расчетному, а, следовательно, и монтажному положению при сдаче однотрубной системы в эксплуатацию. Промежуточное положение заслонки в корпусе трехходового крана при проведении эксплуатационного (потребительского) регулирования теплопередачи показано на рис. 5.15, б, положение заслонки при выключении прибора — на рис. 5.15, в. На заслонке имеется выступ, входящий в выемку на дне корпуса крана (см. рис. 5.14), ограничивающий поворот заслонки только на 90°. Положение заслонки в корпусе в эксплуатационных условиях соответствует положению дуговой стрелки, нанесенной на крышку — указатель крана.