Металлокерамические твердые сплавы
Данные сплавы получили широкое распространение во второй половине прошлого столетия как инструментальный материал для режущих инструментов. Они не являются сталями. Их получают методами порошковой металлургии, и по составу они делятся на три группы.
Вольфрамокобальтовые группы ВК, состоят из карбидов вольфрама WC и кобальта. Кобальт является пластичной цементирующей связкой для порошка карбида вольфрама. Их марки – ВК3, ВК6, ВК8, где цифра показывает содержание кобальта, остальное – карбиды вольфрама. Эти сплавы используют для обработки чугунов, цветных сплавов, неметаллических материалов и т. п.
Вольфрамотитанокобальтовые группы ТК (Т5К10, Т15К6, Т30К4). Цифры указывают содержание карбидов титана TiC и кобальта, остальное – карбиды вольфрама WC.
Третью группу составляют вольфрамотитанотанталокобальтовые ТТК (ТТ7К12, ТТ10К12). Первое число указывает суммарное содержание карбидов титана TiC и карбидов тантала TaC, второе – содержание кобальта, остальное – карбиды вольфрама WC. Сплавы групп ТК и ТТК используются для обработки сталей.
Сплавы выпускаются в основном в виде неперетачиваемых трех-, четырех-, пятигранных пластин, которые механически крепятся к корпусу инструмента и являются его рабочей (режущей) частью. Высокие твердость (HRC68 – 76, HRA85 – 92) и теплостойкость (до 800 – 1000°С) этих сплавов позволяют значительно увеличить обрабатываемость многих инструментальных материалов и в три – пять раз повысить скорость резания по сравнению с инструментами из быстрорежущих сталей.
Сверхтвердые материалы
Названные материалы широко применяют для оснащения лезвийных инструментов: резцов, сверл, фрез и т. п. Такие инструменты используют для чистовой размерной обработки при высоких скоростях резания (более 1000 м/мин).
Среди сверхтвердых материалов первое место принадлежит алмазу, твердость которого в восемь раз превосходит твердость закаленной быстрорежущей стали. Преимущественное применение имеют синтетические алмазы (борт, баллас, карбонадо) поликристаллического строения марок АС2, АС6, АС15 и другие.
Область применения алмазных инструментов ограничивается высокой адгезией к железу, что является причиной его низкой износостойкости при точении сталей и чугунов. Алмазным инструментом обрабатывают цветные металлы и их сплавы, пластмассы, керамику, обеспечивая при этом низкую шероховатость поверхности.
Более универсальными являются инструменты из кубического нитрида бора (КНБ).
В зависимости от технологии получения КНБ выпускают под названием эльбор, эльбор-Р, боризон.
КНБ имеет такую же, как алмаз, кристаллическую решетку и близкие с ним свойства. По твердости он не уступает алмазу, но превосходит его по теплостойкости и химической инертности. Это позволяет использовать его для обработки труднообрабатываемых сталей, в том числе цементованных и закаленных. При этом высокоскоростное точение закаленных сталей заменяет шлифование, сокращая в два – три раза время обработки и обеспечивая низкую шероховатость поверхности.
3. Поверхностное упрочнение ДЕТАЛЕЙ
Многие детали машин работают в условиях трения и подвергаются действию ударной и изгибающей нагрузки, поэтому они должны иметь твердую, износостойкую поверхность, прочную и одновременно вязкую и пластичную сердцевину. Это достигается поверхностным упрочнением.
Назначение поверхностного упрочнения – повышение прочности, твердости, износостойкости поверхностных слоев деталей при сохранении вязкой, пластичной сердцевины для восприятия ударной нагрузки.
У деталей машин, работающих при динамических и циклических нагрузках, трещины усталости возникают в поверхностных слоях под влиянием растягивающих напряжений. Если на поверхности создать остаточные напряжения сжатия, то растягивающие напряжения от нагрузок в эксплуатации будут меньше и увеличится предел выносливости (усталости). Создание в поверхностных слоях деталей напряжений сжатия – второе назначение поверхностного упрочнения.
Техническими условиями на изготовление детали задаются твердость и глубина упрочненного слоя, а также прочность и вязкость сердцевины.
Основные методы поверхностного упрочнения можно разделить на три группы:
механические – пластическое деформирование поверхностных слоев, создание наклепа (нагартовки);
термические – поверхностная закалка;
химико-термическая обработка (цементация, азотирование, хромирование и другие).