Устройства для подогрева воздуха
Для нагревания воздуха применяют преимущественно стальные пластинчатые и биметаллические со спирально-накатным оребрением калориферы. Оребрение увеличивает площадь поверхности нагрева. Теплопередающая поверхность пластинчатых калориферов выполнена из стальных трубок диаметром 16X1,2 мм и стальных гофрированных пластин толщиной 0,55 мм, насаженных на трубки на расстоянии 4,8 мм одна от другой.
Теплообмеиный элемент биметаллических калориферов состоит из двух трубок, насаженных одна на другую. Внутренняя трубка — стальная диаметром 16х Х1,2 мм, а наружная — алюминиевая с накатным на ней оребрением с шагом ребер 2,8 мм. Профиль ребра трапециевидный. В процессе накатки между стальной к алюминиевой трубками образуется надежный механический и термический контакт, что обеспечивает хороший нагрев ребер.В качестве теплоносителя используется вода с температурой до 180°С и давлением до 1,2 МПа, совершающая многоходовое движение по трубкам, что увеличивает ее скорость и, как следствие, интенсивность теплопередачи. Многоходовое движение воды организуется при помощи перегородок, устанавливаемых в распределительно-сборных коллекторах. Входной и выходной патрубки находятся сбоку с одной стороны калориферов. Для удаления воздуха из воды калориферы устанавливают с горизонтальным расположением теплопередающих трубок и патрубков. Теплоносителем является пар с рабочим давлением 1,2 МП а и температурой 190 СС. В отличие от калориферов, использующих в качестве теплоносителя воду, калориферы, в которых применяется пар, имеют одноходовое его движение по теплопередающим трубкам, причем эти калориферы устанавливают с вертикальным расположением трубок и патрубков для лучшего отвода конденсата из калориферов.
Калориферы всех моделей могут быть установлены параллельно и последовательно. Для нагревания значительных объемов воздуха, но при небольшом перепаде температур применяется параллельная установка. При необходимости нагрева воздуха до высокой температуры калориферы устанавливают последовательно.
Технико-экономическими показателями калорифера являются коэффициент теплопередачи, аэродинамическое сопротивление проходу воздуха и масса металла, приходящаяся на 1 м* площади поверхности нагрева. В последние годы промышленность стала выпускать электрические калориферы, разработанные применительно к кондиционерам. Тепловая мощность калориферов 10,50, 150 и 200 кВт. Электрокалориферы сконструированы так, чтобы можно было изменить их мощность и регулировать теплоотдачу.
Вентиляторы.
По принципу действия н назначению вентиляторы подразделяются на радиальные (центробежные), осевые, крышные и потолочные.
Радиальные (центробежные) вентиляторы. Обычный радиальный (центробежный) вентилятор состоит из трех основных частей: рабочего колеса с лопатками (иногда называемого ротором), улиткообразного кожуха и станины с валом, шкивом и подшипниками.
Работа радиального вентилятора заключается в следующем: при вращении рабочего колеса воздух поступает через входное отверстие в каналы между лопатками колеса, под действием центробежной силы перемещается по этим каналам, собирается спиральным кожухом и направляется в его выходное отверстие. Таким образом, воздух в центробежный вентилятор поступает в осевом направлении и выходит из него в направлении, перпендикулярном оси.
Осевые вентиляторы. Простейший осевой вентилятор B-06-30G (рис. 15.5) состоит из рабочего колеса, закрепленного на втулке и насаженного на вал электродвигателя, и кожуха (обечайки), назначение которого — создавать направленный поток воздуха. При вращении колеса возникает движение воздуха вдоль оси вентилятора, что и определяет его название.
Осевой вентилятор по сравнению с радиальным создает при работе больший шум и не способен преодолевать при перемещении воздуха большие сопротивления. В жилых и общественных зданиях осевые вентиляторы следует применять для подачи больших объемов воздуха, но если не требуется давление выше 150—200 Па. Вентиляторы В-06-300-8А, В-06-300-10Л и В-06-300-12.5А широко используют в вытяжных системах вентиляции общественных и производственных зданий.
Подбор вентилятора. Вентилятор подбирают по подаче L, м3/ч, и требуемому полному давлению вентилятора р, Па, пользуясь рабочими характеристиками. В них для определенной частоты вращения колеса даются зависимости между подачей вентилятора по воздуху, с одной стороны, и создаваемым давлением, потребляемой мощностью и коэффициентом полезного действия — с другой.
Полное давление р, по которому подбирается вентилятор, представляет собой сумму статического давления, расходуемого на преодоление сопротивлений по всасывающей и нагнетательной сети, и динамического, создающего скорость движения воздуха.
Величина р, Па, определяется по формуле
Подбирая вентилятор , следует стремиться к тому, чтобы требуемым величинам давления и подачи соответствовало максимальное значение КПД. Это диктуется не только экономическими соображениями, но и стремлением снизить шум вентилятора при работе его в области высоких КПД.
Требуемая мощность , кВт, электродвигателя для вентилятора определяют по формуле
где L- подача вентилятора, м3/ч; р -давление, создаваемое вентилятором, кПа; г],— КПД вентилятора, принимаемый по его характеристике; т1рп_КПД ременной передачи, при клиноременноп передаче равный 0,95, при плоском ремне —0,9.
Установочная мощность электродвигателя определяется по формуле
где а — коэффициент запаса мощности
Тип электродвигателя к вентилятору следует выбирать, учитывая условия эксплуатации последнего — наличие пыли, газа и паров, а также категорию пожаро- и взрывоопасности помещения.