Приборы для измерения давления

Давление в жидкости измеряется приборами:

¾ пьезометрами,

¾ манометрами,

¾ вакуумметрами.

Пьезометры и манометры измеряют избыточное (манометрическое) дав­ление, то есть они работают, если полное давление в жидкости превышает ве­личину, равную одной атмосфере p = 1 кгс/см2= 0,1 МПа. Эти при­боры показывают долю давления сверх атмосферного. Для измерения в жи­д­кости полного давления p необходимо к манометрическому давлению pман прибавить атмосферное давление pатм, снятое с барометра. Прак­тически же в гид­рав­лике атмосферное давление считается величиной посто­янной pатм= =101325 » 100000 Па.

Пьезометр обычно представляет собой вертикальную стеклянную тру­б­ку, нижняя часть которой сообщается с исследуемой точкой в жидкости, где нужно измерить давление (например, точка А на рис. 2), а верхняя её часть открыта в атмосферу. Высота столба жидкости в пьезометре hp является по­казанием этого прибора и позволяет измерять избыточное (манометрическое) давление в точке по соотношению

,

где hp  пьезометрический напор (высота), м.

Упомянутые пьезометры применяются главным образом для лабораторных исследований. Их верхний предел измерения ограничен высотой до 5 м, однако их преимущество перед манометрами состоит в непосредственном измерении давления с помощью пьезометрической высоты столба жидкости без промежуточных передаточных механизмов.

В качестве пьезометра может быть использован любой колодец, кот­лован, скважина с водой или даже любое измерение глубины воды в от­крытом резервуаре, так как оно даёт нам величину hp .

Манометрычаще всего применяются механические, реже  жид­костные. Все манометры измеряют не полное давление, а избыточное

.

Преимуществами их перед пьезометрами являются более широкие пределы измерения, однако есть и недостаток: они требуют контроля их показаний. Манометры, выпускаемые в последнее время, градуируются в единицах СИ: МПа или кПа (см. на с. 54). Однако ещё продолжают применяться и старые манометры со шкалой в кгс/см2, они удобны тем, что эта единица равна одной атмосфере (см. с. 8). Нулевое показание любого манометра соответствует полному давлению p, равному одной атмосфере.

Вакуумметр по своему внешнему виду напоминает манометр, а показы­вает он ту долю давления, которая дополняет полное давление в жидкости до величины одной атмосферы. Вакуум в жидкости  это не пустота, а такое состояние жидкости, когда полное давление в ней меньше атмосферного на ве­личину pв, которая измеряется вакуумметром. Вакуумметрическое давление pв, показываемое прибором, связано с полным и атмосферным так:

.

Величина вакуума pв не может быть быть больше 1 ат, то есть предельное зна­чение pв » 100000 Па, так как полное давление не может быть меньше аб­солютного нуля.

Приведём примеры снятия показаний с приборов:

 пьезометр, показывающий hp=160 см вод. ст., соответ­ствует в единицах СИ давлениям pизб=16000 Па и p= 100000+16000=116000 Па;

 манометр с показаниями pман = 2,5 кгс/см2 соответствует водяному столбу hp=25 м и полному давлению в СИ p = 0,35 МПа;

 вакуумметр, показывающий pв=0,04 МПа, соответствует полному дав­лению p=100000-40000=60000 Па, что составляет 60 % от атмо­сферно­го.

Эпюры давления жидкости

Эпюра давления жидкости ¾ это графическое изображение рас­пре­деле­ния давления жидкости по твёрдой поверхности, соприкасающейся с ней. Примеры эпюр для плоских и кри­волинейных поверхностей при­ведены на рис. 3 и 4. Стрелками на эпюре по­казывают направление дей­ствия давления (вернее, направление нор­мальных напряжений, возни­кающих от действия давления, так как по 2-му свойству давление скалярно). Величина стрелки (ордината) откладывается в масштабе и количественно по­казывает величину давления.

Эпюры давления служат исходными данными для проведения расчётов на прочность и устойчивость конструкций, взаимодействующих с жидко­стями: стенок пла­ва­тельных бассейнов, баков, резервуаров, цистерн. Рас­чёты ведутся мето­дами сопротивления материалов и строительной меха­ники.

В большинстве случаев строят эпюры избыточного давления вместо по­л­ного,, а атмосферное не учитывают из-за его взаимного погашения с той и другой стороны ограждающей конструкции. При построении таких эпюр для плоских и криволинейных поверхностей (см. рис. 3 и 4) используют линейную за­висимость давления от глубины pизб = gh и 1-е свойство гидростатического давления (см. с. 8).

Законы Архимеда и Паскаля

Практическое значение имеют два закона гидростатики: Архимеда и Па­скаля.

Закон Архимеда о подъёмной (архимедовой) силе Fn , действую­щей на погружённое в жидкость тело, имеет вид

,

где Vm  объём жидкости, вытесненной телом.

В строительной практике этот закон применяется, например, при расчёте подземных резервуаров на всплытие в обводнённых грунтах. На рис. 5 показан резервуар, часть которого расположена ниже уровня грун­то­вых вод (УГВ). Таким образом, он вытесняет объём воды, равный объёму его погружённой части ниже УГВ, что вызывает появление ар­химедовой силы Fп. Если Fп превысит собственный вес резервуара Gр, то конструк­ция может всплыть.

Закон Паскаля звучит так: внешнее давление, приложенное к жид­кости, находящейся в замкнутом резервуаре, передаётся внутри жидкости во все её точки без изменения. На этом законе основано действие многих гид­равличе­ских устройств: гидродомкратов, гидропрессов, гидропривода ма­шин, тормозных систем автомобилей.

Гидростатический напор

Гидростатический напор H  это энергетическая характе­ри­стика покоящейся жидкости. Напор измеряется в метрах по высоте (вертикали).

Гидростатический напор H складывается из двух величин (рис. 6):

,

где z  геометрический напор или высота точки над нулевой горизонтальной плоскостью отсчёта напора О-О; hp  пьезо­метрический напор (высота).

Гидростатический напор H характеризует потенциальную энергию жид­кости (её энергию покоя). Его составляющая z отражает энергию положения. Например, чем выше водонапорная башня, тем больший напор она обеспечивает в системе водопровода. Величина hp связана с давлением. Например, чем выше избыточное давление в водопроводной трубе, тем больше напор в ней и вода поднимется на бльшую высоту.

Напоры для различных точек жидкости должны отсчитываться от одной горизонтальной плоскости О-О для того, чтобы их можно было сравнивать друг с другом. В качестве горизонтальной плоскости сравнения О-О может быть принята любая. Однако если сама труба горизонтальна, то иногда для упрощения расчётов удобнее О-О провести по оси трубы. Кроме того, на практике часто высотные отметки z и H отсчёта напоров от О-О отождествляют с абсолютными геодезическими, отсчитываемыми от сре­днего уровня поверхности океана. В России, например, они отсчиты­ваются от уровня Балтийского моря.

Важная особенность гидростатического напора состоит в том, что он одинаков для всех точек покоящейся жидкости, гидравлически взаимосвязанных. Равенство напоров HA = HBпроиллюстрировано для точек А и В в резервуаре на рис. 6, невзирая на то, что они находятся на разных глубинах и давления в них неодинаковые. Следует обратить внимание, что для открытых резервуаров напор в любой точке жидкости находится очень просто: от О-О до уровня свободной поверхности воды, на которую действует атмосферное давление pатм.

Гидродинамика

Гидродинамика  это раздел гидравлики (механики жидкости), изу-чающий закономерности движущихся жидкостей (потоков жидкостей).

Наши рекомендации