Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями

Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями. Наиболее распространенная простая однорядная пла­нетарная передана (рис. 16.1) состоит из центрального колеса 1 с наруж­ными зубьями, неподвижного центрального колеса 3 с внутренними зубьями, сателлитов 2—колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (здесь число сателлитов с = 3), и во­дила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом).

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

Рис. 16.1. Схема однорядной планетарной передачи

При неподвижном колесе 3 вращение колеса 1 вызывает вращение сателлита 2 относительно собственной оси, а обкатывание сателлита по колесу 3 перемещает его ось и вращает водило Н. Сателлит таким образом совершает вращение относительно водила и вместе с водилом вокруг центральной оси, т. е. совершает движение, подобное движению планет. Поэтому передачи называют планетарными.

При неподвижном колесе 3 движение передают чаще всего от коле­са/к водилу Я, можно передавать движение от водила Н к колесу 1.

В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной.С помощью дифференциального механизма можно суммировать дви­жение двух звеньев на одном или раскладывать движение одного звена на два других. Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.

Достоинствапланетарных передач. 1. Малые габариты и масса вслед­ствие передачи мощности по нескольким потокам, численно равным числу сателлитов. При этом нагрузка в каждом зацеплении уменьша­ется в несколько раз. 2. Удобство компоновки в машинах благодаря соосности ведущего и ведомого валов. 3. Работа с меньшим шумом, чем в обычных зубчатых передачах, что связано с меньшими разме­рами колес и замыканием сил в механизме. При симметричном рас­положении сателлитов силы в передаче взаимно уравновешиваются. 4. Малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них. 5. Возможность получения больших переда­точных чисел при небольшом числе зубчатых колес и малых габаритах.

Недостатки. 1.Повышенные требования к точности изготовления и монтажа передачи. 2. Большее число деталей (подшипников), слож­нее сборка.

Планетарную передачу применяюткак: а) редуктор в силовых пере­дачах и приборах; б) коробку передач, передаточное число в которой изменяют путем поочередного торможения различных звеньев (напри­мер, водила или одного из колес); в) дифференциал в автомобилях, тракторах, станках, приборах.

Часто применяют планетарную передачу, совмещенную с электро­двигателем (мотор-редуктор, мотор-колесо).

Передаточное число планетарных передач

При определении передаточного числа планетарной передачи ис­пользуют метод остановки водила (метод Виллиса). По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила п„, но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается. Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом ста­новятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число механизма. Передаточное число в обращенном механизме определяют как в двухступенчатой передаче с одним внешним и вторым внутренним зацеплением.

Здесь существенное значение имеет знак передаточного числа. Пе­редаточное число считают положительным, если в обращенном меха­низме ведущее и ведомое звенья вращаются в одну сторону, и отри­цательным, если в разные стороны. Так, для обращенного механизма передачи по рис. 16.1 имеем

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1. 194




Разновидности планетарных передач

 

Существует много различных типов планетарных передач. Наиболее широко в машиностроении применяют однорядную планетарную пере­дачу, схема которой показана на рис. 16.1. Эта передача конструктивно проста, имеет малые размеры. Находит применение в силовых и Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru вспо­могательных приводах. КПД передачи η = 0,96...0,98 при u = 3...8.

Подбор чисел зубьев планетарных передач

Рассмотрим последовательность подбора чисел зубьев на примере получившей наибольшее распространение планетарной однорядной прямозубой передачи (см. рис. 16.1).

Число зубьев z1 центральной шестерни 1 задают из условия неподреза­ния ножки зуба: z1 > 17 (см. § 11.10). Принимают z1 = 24 при Н < 350 НВ; z1 = 21 при Н<52 HRC и z1 = 17 при Н>52 HRC.

Число зубьев z1 неподвижного центрального колеса 3 определяют по заданному передаточному числу и из формулы (16.2):

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

Число зубьев Z2 сателлита 2 вычисляют из условия соосности, в со­ответствии с которым межосевые расстояния aw зубчатых пар с вне­шним и внутренним зацеплениями должны быть равны. Из рис. 16.1 для немодифицированной прямозубой передачи

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

где d=mz — делительные диаметры.

Так как модули зацеплений планетарной передачи одинаковые, то формула (16.5) принимает вид

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

Полученные числа зубьев z1, z2 и г3 проверяют по условиям сборки и соседства.

Условие сборки требует, чтобы во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, в противном случае собрать передачу невозможно. Установлено, что при симметричном расположении сателлитов условие сборки удовлетворя­ется, когда сумма зубьев центральных колес (z1 + z3) кратна числу сателлитов с = 2...6 (обычно с = 3), т. е.

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

Расчет на прочность планетарных передач

Расчет на прочность планетарных передач ведут по формулам для обычных зубчатых передач. Расчет выполняют для каждого зацепления. Например, в передаче, изображенной на рис. 16.1, необходимо рассчи­тать внешнее зацепление колес 7 и 2 и внутреннее — колес 2 и 3. Так как модули и силы в этих зацеплениях одинаковы, а внутреннее за­цепление по своим свойствам прочнее внешнего, то при одинаковых материалах колес достаточно рассчитать только внешнее зацепление.

Расчет передачи ведут в последовательности, изложенной в § 13.6, со следующими отличиями.

Расчет начинают с подбора чисел зубьев колес: z1, z2, z3 [см. формулы (16.4-16.9)].

При определении допускаемых напряжений (см. § 12.5) коэффици­енты долговечности ZN и YH находят по числу циклов NK перемены напряжений зубьев за весь срок службы при вращении колес только относительно друг друга.

Для центральной шестерни

(16.10)

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

где с —число сателлитов; LH — суммарное время работы передачи, ч; п', = nt –пH — относительная частота вращения центральной шестерни; nt и пH —частоты вращения центральной шестерни и водила, мин1. По п', вычисляют окружную скорость, по которой выбирают степень точности передачи и коэффициенты KHv, KFv. Для сателлитов

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

(16.11)

где n3 — число нагружений зуба за один оборот сателлита; п'г = п'1 z1/z2 — относительная частота вращения сателлита.

Зуб сателлита за один оборот нагружается дважды — в зацеплении с колесами / и 3 (см. рис. 16.1). Однако при определении числа циклов щ = 1, так как зуб работает с колесами / и 3 разными боковыми сторонами.

При определении допускаемых напряжений изгиба [a]F2 для зубьев сателлита вводят коэффициент YA, учитывающий двустороннее прило­жение нагрузки (симметричный цикл нагружения): У^ = 0,65; 0,75; 0,9 соответственно для улучшенных, закаленных ТВЧ (или цементован­ных) и азотированных сталей.

Межосевое расстояние планетарной прямозубой передачи для пары колес внешнего зацепления (центральной шестерни с сателлитом) определяют по формуле (см. § 13.4)

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

Общие сведения. Планетарныминазывают передачи, имеющие зубчатые колеса с под­вижными осями - student2.ru

(16.12)

где и - z2/z1 — передаточное число рассчитываемой пары колес; Кс= 1,1... 1,2 — коэффициент неравномерности распределения нагрузки между сателлитами; Г, — вращающий момент на валу центральной ше­стерни, Нм; с —число сателлитов; ψba — коэффициент ширины венца колеса: ψba = 0,4 для Н< 350 НВ,ψba = 0,315при 350 НВ<Н<50 HRC,ψba = 0,25 для Н>50 HRC.

Ширина Ьъ центрального колеса 3 определяется по формуле b} = ybaaw.

Ширину Ьг венца сателлита принимают на 2...4 мм больше значе­ния Ьъ, ширина центральной шестерни bt = l,lb2.

Наши рекомендации