Базовые задачи гидродинамики, используемые в нефтегазовой отрасли
ПОСТАНОВКА ЗАДАЧ
При промывке и цементировании скважин простейшими базовыми задачами гидромеханики, допускающими аналитическое решение, являются задачи о течении жидкости в плоской щели (между двумя параллельными бесконечными пластинами), в круглой трубе и в кольцевом пространстве между двумя соосными цилиндрами.
Для их решения необходимо исходить из следующих условий:
· жидкость несжимаема(r = const);
· течение установившееся( );
· все частицы жидкости движутся параллельно твёрдым стенкам канала, что означает, что при совмещении координатной оси Oz с направлением течения, отличной от нуля, будет лишь одна составляющая vz скорости
· концевые эффекты пренебрежимо малы, то есть, картина течения в любом сечении, нормальном к потоку, идентична , что справедливо для сечений, удалённых от концов канала на расстояние равное 0.035 d ×Re,гдеd- характерный размер поперечного сечения: для щели - это расстояние между плоскостями; для трубы - её диаметр; для кольцевого пространства - удвоенный зазор;
· вдоль потока действует постоянный градиент давления равный , где Dр > 0 - полный перепад давления между двумя сечениями, находящимися на расстоянии L друг от друга;
· на жидкость действует объёмная силаFz = ±rg (Fx = Fy = 0),обусловленная только силой тяжести, где принимают знак (+), если жидкость движется вниз, и знак (-)- вверх, когда положительное направление оси Оz совпадает с направлением движения.
Скорости частиц жидкости в рассматриваемых каналах симметричны относительно плоскости yz - для щели и относительно оси Oz - для круглой трубы и кольцевого пространства, то vz = v(x) и vz= v(r) соответственно.
Поэтому, согласно соотношениям Коши и уравнениям состояния при течении жидкости в щели, отличными от 0, будут только одна скорость деформации и одно напряжение сдвига:
(10.1.1)
Для течения в трубе и кольцевом пространстве
(10.1.2)
Система дифференциальных уравнений существенно упрощается:
· уравнения движения и уравнения неразрывности удовлетворяются тождественно;
· уравнение механического состояния в плоской щели принимает вид
,
а в кольцевом пространстве
,
где DR = Dp ± rgL - гидродинамические потери давления, обусловленные только движением жидкости независимо от направления течения.
Интегрирование этих уравнений при условиях sxz = 0 при х = 0 для щели и srz = 0 при r = 0 для круглой трубы приводит к выражениям:
(10.1.3)
, (10.1.4)
где постоянная интегрирования с2 ¹ 0 только при течении жидкости в кольцевом пространстве.
Запомните, что соотношения (10.1.1) - (10.1.4) справедливы при ламинарном течении любой жидкости (ньютоновской или неньютоновской). Сохранятся они и при турбулентном режиме течения, но под величинами v, DP,sxz, srz будут пониматься усреднённые по времени значения этих величин:
.
Далее рассматриваются аналитические решения граничных задач течения жидкости в щели и в кольцевом пространстве (в зависимости от характера течения и реологических свойств жидкости).
При этом определяются основные интегральные гидродинамические характеристики потока:
· объёмный расход ;
· средняя скорость vср= Q/S;
· коэффициент сопротивления l.= 4f= 4SDP/SdW;
где S, Sd- соответственно площади поперечного сечения и боковой смоченной поверхности канала;f= t/W-коэффициент трения Фаннинга; t = SDP/Sd -касательное напряжение у поверхности канала; W=1/2rv2 - кинетическая энергия единицы объёма жидкости.
Определение объёмного расхода по заданному перепаду давления обычно называют прямой задачей гидродинамики, а определение перепада давления по заданному расходу - обратной.
Все результаты, рассматриваемые далее, относятся к решениям прямой граничной задачи, а полученные зависимости используются для вычисления гидравлических потерь. Для этой цели определяется закон сопротивления, т.е. зависимость коэффициента l от характеристик течения.
Основополагающей задачей гидродинамики (гидравлики) является экспериментальное установление закона сопротивления.
Если lне зависит от DР, то для коэффициента сопротивления получаем известный закон Дарси-Вейсбаха, широко используемый для определения гидравлических потерь в цилиндрических каналах при турбулентном режиме течения:
.