Уравнение движения сплошной среды
В теоретической механике известно уравнение количества движения материальной точки:
,
где в правой части равенства стоит сумма всех действующих на нее сил. Обобщим это уравнение на конечный объем сплошной среды, состоящей из частиц, как системы материальных точек, подверженных действию объемных и поверхностных сил:
(1.13)
Первый член левой части этого уравнения представляет собой отнесенное к единичному объему изменение количества движения в этом объеме за единицу времени, второй член - отнесенное к единичному объему изменение количества движения за счет конвекции в этом объеме за единицу времени.
Первый член правой части есть отнесенная к единице объема массовая сила, второй член – отнесенные к единице объема поверхностные силы.
Используя уравнение неразрывности получаем следующее:
(1.14)
Для ньютоновских жидкостей напряжение на некоторой площадке пропорционально скорости деформации сплошной среды (жидкости). При этом связь между давлением, скоростью деформации и компонентами тензора напряжений имеет вид:
(1.15)
где δi,j – символ Кронекера (δi,j = 1, если i=j, и δi,j = 0, если i≠j), u1, u2, u3 – компоненты вектора скорости , x1, x2, x3 –координаты радиус-вектора точки, μ – коэффициент динамической вязкости, μ’ – второй коэффициент вязкости, связанный с объемной вязкостью .
Обычно объемной вязкостью пренебрегаю (кроме случаев рассмотрения распространения ударных, акустических волн), тогда выражение для тензора напряжений можно записать в виде:
(1.16)
Тензор напряжений разделяют на две части:
, (1.17)
где первое слагаемой в правой части – компоненты нормальных напряжений, а второе – касательных или вязких:
(1.18)
Течение несжимаемой вязкой жидкости с постоянным коэффициентом вязкости описывается следующим уравнением:
. (1.19)
Или
(1.20)
В проекции на декартову систему координат имеем три скалярных уравнения:
(1.21) |
Выделив в уравнениях компоненты тензора вязких напряжений, получим:
(1.22) |
где компоненты тензора имеют вид:
(1.23) |
Применение первого закона термодинамики к жидкости, протекающей через бесконечно малый объем приводит к следующему уравнению энергии:
, (1.24)
где Et – полная энергия единицы объема.
Первый член в левой части уравнения есть изменение полной энергии контрольного объема в единицу времени, второй – изменение полной энергии за счет конвекции через поверхность, ограничивающую контрольный объем, в единицу времени. Первый член в правой части – скорость тепловыделения внешних источников, отнесенная к единице объема; второй член – теплопотери за счет теплопроводности через контрольную поверхность в единицу времени; третий член – отнесенная к единице объема работа массовых сил над контрольным объемом; четвертый член – отнесенная к единице объема работа поверхностных сил над контрольным объемом.
Последние два слагаемых правой части можно заменить диссипативной функцией Ф, являющейся тепловым эквивалентом механической мощности, затрачиваемой на вязкую деформацию жидкости.
(1.25)
В декартовой системе координат диссипативная функция принимает вид:
(1.26)
Введем величину энтальпии и получим:
(1.27)
Используя закон Фурье для переноса энергии за счет теплопроводности:
, (1.28)
получаем:
(1.29)
Таким образом полную термодинамическую систему массообмена в газе составляют три уравнения: неразрывности, Навье-Стокса и энергии.
Виды сплошной среды
Экспериментальные данные показывают, что большинство сред обладает специфическим свойством: отсутствием или малостью касательных напряжений pSt, т.е. вектор S можно считать перпендикулярным любой площадке взаимодействия dS и равным нормальному напряжению pSn. Среду, обладающую таким свойством называют идеальной жидкостью или идеальным газом. Близки к таковым обычные воздух и вода при малых скоростях.
Понятно, что идеальная жидкость не единственно возможная модель сплошной среды, позволяющая определить компоненты тензора внутренних напряжений. Можно, например, рассматривать его компоненты как функции от деформации частицы: в этом случае среда называется упругой. В частном случае линейности это соотношение приобретает вид закона Гука. Изучением таких сред занимается теория упругости.
Особое место в механике сплошной среды занимает модель вязкой жидкости, предполагающая связь тензора внутренних напряжений с частными производными скорости по координатам. Имеется в виду эффект "трения" слоев вязкой жидкости между собой при наличии разности их поступательных скоростей. В частном случае линейности связь представляется в виде закона Навье-Стокса (или обобщенного закона вязкости Ньютона).
В теории вязкой жидкости m называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости, – кинематическим коэффициентом вязкости (коэффициентом линейной вязкости), – вторым коэффициентом вязкости (коэффициентом объемной вязкости). Размерность m, l и z в СИ: .
Нетрудно видеть, что упомянутые модели для идеальной и вязкой жидкости вводят еще одну неизвестную – давление p. Т.е. для замыкания системы уравнений движения сплошной среды оказывается необходимым еще одно скалярное соотношение. В этом качестве чаще всего применяются уравнения, представляющие различные гипотезы связи плотности и давления:
.
Если такое соотношение можно ввести, то жидкость называется баротропной. Выделяются следующие частные случаи.
1. – случай несжимаемой жидкости, или .
2. , где C – постоянная, – случай изотермического процесса.
3. , где C и n – постоянные, – случай политропического процесса, n называется показателем политропы.
4. – уравнение Клапейрона-Менделеева для совершенного газа, где – универсальная газовая постоянная, – масса вещества в кг, численно равная молекулярному весу, T – абсолютная температура, которую необходимо задавать еще одним дополнительным соотношением.