Силы трения покоя и скольжения. Коэффициент трения скольжения
Силы, мешающие движению, знакомы человеку с глубокой древности. Каждому известно, как трудно передвигать тяжелые предметы. Это связано с тем, что поверхность твердого тела не является идеально гладкой и содержит множество зазубрин (они имеют различные размеры, которые уменьшаются при шлифовке). При соприкосновении поверхностей двух тел происходит сцепление зазубрин. Пусть к одному из тел приложена небольшая сила (F), направленная по касательной к соприкасающимся поверхностям. Под действием этой силы зазубрины будут деформироваться (изгибаться). Поэтому появится сила упругости, направленная вдоль соприкасающихся поверхностей. Сила упругости, действующая на тело, к которому приложена сила F, компенсирует ее и тело останется в покое.
Сила трения покоя — сила, возникающая на границе соприкасающихся тел при отсутствии их относительного движения.
Сила трения покоя направлена по касательной к поверхности соприкосновения тел (рис. 6.3) в сторону, противоположную силе F, и равна ей по величине: F = -F.
Г тр
При увеличении модуля силы F изгиб зацепившихся зазубрин будет возрастать и, в конце концов, они начнут ломаться. Тело придет в движение.
Сила трения скольжения — сила, возникающая на границе соприкасающихся тел при их относительном движении.
Вектор силы трения скольжения направлен противоположно вектору скорости движения тела относительно поверхности, по которой оно скользит.
Тело, скользящее по твердой поверхности, прижимается к ней какой-либо внешней силой Р (например, силой тяжести), направленной по нормали. В результате этого поверхность прогибается и появляется сила упругости N (сила нормального давления или реакция опоры), которая компенсирует прижимающую силу P(N = -Р). Чем больше сила N, тем глубже сцепление зазубрин и тем-труднее их сломать. Опыт показывает, что модуль силы трения скольжения пропорционален силе нормального давления:
Безразмерный коэффициент [I называется коэффициентом трения скольжения. Он зависит от материалов соприкасающихся поверхностей и степени их шлифовки. Например, при передвижении на лыжах коэффициент трения скольжения зависит от качества смазки (сорт мази, толщина слоя мази, качество разравнивания слоя), поверхности лыжни (мягкая, сыпучая, уплотненная, оледенелая, той или иной степени влажности и с тем или иным строением снега в зависимости от температуры и влажности воздуха и др). Большое количество переменных факторов делает сам коэффициент непостоянным. Если коэффициент трения лежит в пределах 0,045—0,055 скольжение считается хорошим.
Можно считать, что максимальное значение силы трения покоя равно силе трения, действующей при скольжении:
В табл. 6.1 приведены значения коэффициента трения скольжения для различных соприкасающихся тел.
Таблица 6.1
Сила трения качения
Этот вид трения проявляется при качении и связан не с деформацией зазубрин, а с деформацией дороги (прогиб) и самого колеса (небольшое сплющивание), рис. 6.5.
При качении по мягкому покрытию колесо вдавливается в опору, образуя ямку, через край которой ему все время приходится перекатываться, рис. 6.5, а. Французский физик Ш. Кулон на основе опытов нашел, что сила трения качения (FKa4) пропорциональна силе нормального давления N и обратно пропорциональна радиусу г колеса:
Из формулы видно, что коэффициент трения качения зависит от радиуса колеса и выражается в единицах длины (м или см). Значения коэффициента трения качения для некоторых веществ приведены в табл. 6.2.
При движении по твердому покрытию сила трения качения связана с деформацией самого колеса. С этой силой особенно приходится считаться в вело- и мотоспорте. Ее величина определяется по формуле:
где N — сила нормального давления; Ь — расстояние между теоретической точкой опоры шины и фактической первой точкой встречи шины с поверхностью, по которой проходит перемещение, рис. 6.5, б.
Сила трения качения много меньше силы трения скольжения, поэтому колесо широко используется в различных видах транспорта.