Использование системного вызова shmctl() для освобождения ресурса
Для той же цели – удалить область разделяемой памяти из системы – можно воспользоваться и системным вызовом shmctl() . Этот системный вызов позволяет полностью ликвидировать область разделяемой памяти в операционной системе по заданному дескриптору средства IPC, если, конечно, у вас хватает для этого полномочий. Системный вызов shmctl() позволяет выполнять и другие действия над сегментом разделяемой памяти, но их изучение лежит за пределами нашего курса.
Системный вызов shmctl() Прототип системного вызова #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> int shmctl(int shmid, int cmd, struct shmid_ds *buf); Описание системного вызова Системный вызов shmctl предназначен для получения информации об области разделяемой памяти, изменения ее атрибутов и удаления из системы. Данное описание не является полным описанием системного вызова, а ограничивается рамками текущего курса. Для изучения полного описания обращайтесь к UNIX Manual. В нашем курсе мы будем пользоваться системным вызовом shmctl только для удаления области разделяемой памяти из системы. Параметр shmid является дескрипторомSystem V IPC для сегмента разделяемой памяти, т. е. значением, которое вернул системный вызов shmget() при создании сегмента или при его поиске по ключу. В качестве параметра cmd в рамках нашего курса мы всегда будем передавать значение IPC_RMID – команду для удаления сегмента разделяемой памяти с заданным идентификатором. Параметр buf для этой команды не используется, поэтому мы всегда будем подставлять туда значение NULL. Возвращаемое значение Системный вызов возвращает значение 0 при нормальном завершении и значение -1 при возникновении ошибки. |
Разделяемая память и системные вызовы fork(), exec() и функция exit()
Важным вопросом является поведение сегментов разделяемой памяти при выполнении процессом системных вызовов fork(), exec() и функции exit().
При выполнении системного вызова fork() все области разделяемой памяти, размещенные в адресном пространстве процесса, наследуются порожденным процессом.
При выполнении системных вызовов exec() и функции exit() все области разделяемой памяти, размещенные в адресном пространстве процесса, исключаются из его адресного пространства, но продолжают существовать в операционной системе.
Самостоятельное написание, компиляция и запуск программы для организации связи двух процессов через разделяемую память.
Для закрепления полученных знаний напишите две программы, осуществляющие взаимодействие через разделяемую память. Первая программа должна создавать сегмент разделяемой памяти и копировать туда собственный исходный текст, вторая программа должна брать оттуда этот текст, печатать его на экране и удалять сегмент разделяемой памяти из системы.
Понятие о нити исполнения (thread) в UNIX. Идентификатор нити исполнения. Функция pthread_self()
На лекции 4 мы говорили, что во многих современных операционных системах существует расширенная реализация понятия процесс, когда процесс представляет собой совокупность выделенных ему ресурсов и набора нитей исполнения. Нити процесса разделяют его программный код, глобальные переменные и системные ресурсы, но каждая нить имеет собственный программный счетчик, свое содержимое регистров и свой стек. Посколькуглобальные переменные у нитей исполнения являются общими, они могут использовать их, как элементы разделяемой памяти, не прибегая к механизму, описанному выше.
В различных версиях операционной системы UNIX существуют различные интерфейсы, обеспечивающие работу с нитями исполнения. Мы кратко ознакомимся с некоторыми функциями, позволяющими разделить процесс наthread'ы и управлять их поведением, в соответствии со стандартом POSIX. Нити исполнения, удовлетворяющие стандарту POSIX, принято называть POSIX thread'ами или, кратко, pthread'ами.
К сожалению, операционная система Linux не полностью поддерживает нити исполнения на уровне ядра системы. При создании нового thread'а запускается новый традиционный процесс, разделяющий с родительским традиционным процессом его ресурсы, программный код и данные, расположенные вне стека, т.е. фактически действительно создается новый thread, но ядро не умеет определять, что эти thread'ы являются составными частями одного целого. Это "знает" только специальный процесс-координатор, работающий на пользовательском уровне и стартующий при первом вызове функций, обеспечивающих POSIX интерфейс для нитей исполнения. Поэтому мы сможем наблюдать не все преимущества использования нитей исполнения (в частности, ускорить решение задачи на однопроцессорной машине с их помощью вряд ли получится), но даже в этом случае thread'ы можно задействовать как очень удобный способ для создания процессов с общими ресурсами, программным кодом и разделяемой памятью.
Каждая нить исполнения, как и процесс, имеет в системе уникальный номер – идентификатор thread'a. Поскольку традиционный процесс в концепции нитей исполнения трактуется как процесс, содержащий единственную нить исполнения, мы можем узнать идентификатор этой нити и для любого обычного процесса. Для этого используется функция pthread_self() . Нить исполнения, создаваемую при рождении нового процесса, принято называтьначальной или главной нитью исполнения этого процесса.
Функция pthread_self() Прототип функции #include <pthread.h> pthread_t pthread_self(void); Описание функции Функция pthread_self возвращает идентификатор текущей нити исполнения. Тип данных pthread_t является синонимом для одного из целочисленных типов языка C. |
Создание и завершение thread'а. Функции pthread_create(), pthread_exit(), pthread_join()
Нити исполнения, как и традиционные процессы, могут порождать нити-потомки, правда, только внутри своего процесса. Каждый будущий thread внутри программы должен представлять собой функцию с прототипом
void *thread(void *arg);
Параметр arg передается этой функции при создании thread'a и может, до некоторой степени, рассматриваться как аналог параметров функции main(), о которых мы говорили на семинарах 3–4. Возвращаемое функциейзначение может интерпретироваться как аналог информации, которую родительский процесс может получить после завершения процесса-ребенка. Для создания новой нити исполнения применяется функция pthread_create().
Функция для создания нити исполнения Прототип функции #include <pthread.h> int pthread_create(pthread_t *thread, pthread_attr_t *attr, void * (*start_routine)(void *), void *arg); Описание функции Функция pthread_create служит для создания новой нити исполнения (thread'а) внутри текущего процесса. Настоящее описание не является полным описанием функции, а служит только целям данного курса. Для изучения полного описания обращайтесь к UNIX Manual. Новый thread будет выполнять функцию start_routine с прототипом void *start_routine(void *) передавая ей в качестве аргумента параметр arg. Если требуется передать более одного параметра, они собираются в структуру, и передается адрес этой структуры. Значение, возвращаемое функцией start_routine не должно указывать на динамический объект данного thread'а. Параметр attr служит для задания различных атрибутов создаваемого thread'а. Их описание выходит за рамки нашего курса, и мы всегда будем считать их заданными по умолчанию, подставляя в качестве аргумента значение NULL. Возвращаемые значения При удачном завершении функция возвращает значение 0 и помещает идентификатор новой нити исполнения по адресу, на который указывает параметр thread. В случае ошибки возвращается положительное значение (а не отрицательное, как в большинстве системных вызовов и функций!), которое определяет код ошибки, описанный в файле <errno.h>. Значение системной переменной errno при этом не устанавливается. |
Мы не будем рассматривать ее в полном объеме, так как детальное изучение программирования с использованием thread'ов не является целью данного курса.
Важным отличием этой функции от большинства других системных вызовов и функций является то, что в случае неудачного завершения она возвращает не отрицательное, а положительное значение, которое определяеткод ошибки, описанный в файле <errno.h>. Значение системной переменной errno при этом не устанавливается. Результатом выполнения этой функции является появление в системе новой нити исполнения, которая будет выполнять функцию, ассоциированную со thread'ом, передав ей специфицированный параметр, параллельно с уже существовавшими нитями исполнения процесса.
Созданный thread может завершить свою деятельность тремя способами:
· С помощью выполнения функции pthread_exit() . Функция никогда не возвращается в вызвавшую ее нить исполнения. Объект, на который указывает параметр этой функции, может быть изучен в другой нити исполнения, например, в породившей завершившийся thread. Этот параметр, следовательно, должен указывать на объект, не являющийся локальным для завершившегося thread'а, например, на статическую переменную;
· С помощью возврата из функции, ассоциированной с нитью исполнения. Объект, на который указывает адрес, возвращаемый функцией, как и в предыдущем случае, может быть изучен в другой нити исполнения, например, в породившей завершившийся thread, и должен указывать на объект, не являющийся локальным для завершившегося thread'а;
· Если в процессе выполняется возврат из функции main() или где-либо в процессе (в любой нити исполнения ) осуществляется вызов функции exit(), это приводит к завершению всех thread'ов процесса.
Функция для завершения нити исполнения Прототип функции #include <pthread.h> void pthread_exit(void *status); Описание функции Функция pthread_exit служит для завершения нити исполнения ( thread ) текущего процесса. Функция никогда не возвращается в вызвавший ее thread. Объект, на который указывает параметр status, может быть впоследствии изучен в другой нити исполнения, например в нити, породившей завершившуюся нить. Поэтому он не должен указывать на динамический объект завершившегося thread'а. |
Одним из вариантов получения адреса, возвращаемого завершившимся thread'ом, с одновременным ожиданием его завершения является использование функции pthread_join() . Нить исполнения, вызвавшая эту функцию, переходит в состояние ожидание до завершения заданного thread'а. Функция позволяет также получить указатель, который вернул завершившийся thread в операционную систему.
Функция pthread_join() Прототип функции #include <pthread.h> int pthread_join (pthread_t thread, void **status_addr); Описание функции Функция pthread_join блокирует работу вызвавшей ее нити исполнения до завершения thread'а с идентификатором thread. После разблокирования в указатель, расположенный по адресу status_addr, заносится адрес, который вернул завершившийся thread либо при выходе из ассоциированной с ним функции, либо при выполнении функции pthread_exit() . Если нас не интересует, что вернула нам нить исполнения, в качестве этого параметра можно использовать значение NULL. Возвращаемые значения Функция возвращает значение 0 при успешном завершении. В случае ошибки возвращается положительное значение (а не отрицательное, как в большинстве системных вызовов и функций!), которое определяет код ошибки, описанный в файле <errno.h>. Значение системной переменной errno при этом не устанавливается. |