Предбиологическая (химическая) эволюция
После того как из вымени взрослой овцы были взяты клетки, в результате их смешивания с яйцеклетками было получено 277 соединенных клеток, 29 из которых развивались до стадии бластоцита. Полученные 29 зародышей вживили в матки 13 овец. В результате родился только один живой ягненок — Долли. Неудивительно, что, если в качестве исходного материала для клонирования используются клетки взрослого животного, процент положительных результатов является достаточно низким.
Это долгий и сложный процесс, требующий выращивания донорских клеток в нескольких средах. Кроме того, в данном случае необходимо особым образом вырастить измененную яйцеклетку-реципиент и дождаться окончания необходимого срока беременности. Более удачные результаты достигаются в тех случаях, когда в качестве донорских берутся зародышевые клетки или клетки плода. Однако до тех пор, пока животное не достигнет зрелости, невозможно точно определить, какая особь наиболее подходит для донорских целей.
Вопрос №38.
(Пролиферация клеток, запрограммированная клеточная гибель, адгезия клеток, замыкание закладок как механизмы морфогенетических преобразований в онтогенезе. Врождённые пороки развития как следствия нарушения данных процессов. Примеры)
Пролиферация- увеличение числа клеток путем митоза, которое приводит к росту и обновлению ткани. Интенсивность пролиферации регулируется веществами, которые вырабатываются как внутри клеток, так и вдали от клеток. Современные данные свидетельствуют о том, что одним из регуляторов пролиферации на клеточном уровне являются кейлоны. Кейлоны – гормоноподобные вещества, являющиеся полипептидами или гликопротеинами. Они образуются всеми клетками и внутри клеток высших организмов, обнаружены в различных жидкостях организма, в том числе и в моче. Кейлоны подавляют митотическую активность клеток. Так же они участвуют в регуляции роста тканей, заживлении ран, иммунных реакциях.
Апоптоз — явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов.
Апоптоз — форма гибели клетки, проявляющаяся в уменьшении ее размера, конденсации и фрагментациихроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду. Несмотря на то, что обычно более принципиальным является аспект программированности и активный характер гибели, чем сопутствующие ей морфологические изменения, чаще используется термин «апоптоз», вероятно, из-за его краткости.
При изложении клеточных механизмов в гл. 8 приводились примеры иллюстрирующие, как нарушение этих механизмов может приводить к формированию врожденных пороков развития. В данной главе описаны лишь некоторые пороки развития тех органов, морфогенез которых был рассмотрен в гл. 7. Их следует рассматривать как отдельные примеры подкрепляющие обоснованность изучения онтофилогенетических предпосылок формирования врожденных пороков развития.
Различные варианты расщелины позвоночника как бы соответствуют очень древнему примитивному строению его у низших позвоночных Скрытая расщелина позвоночника (spina bifida occulta)—это дефект в виде аплазии спинных дужек и остистых отростков (рис. 9.2, А). Дужки позвонков при нормальном развитии образуются из мигрирующих клеток склеротомов под индуцирующим влиянием со стороны хорды, спинного мозга и спинномозговых узлов. При описываемом пороке происходит остановка их развития, что, вероятно, может быть связано с нарушением необходимых индуцирующих воздействий.
Скрытые формы расщелины первого крестцового позвонка встречаются среди людей с частотой около 10%, а первого шейного—с частотой около 3%. Как правило, спинной мозг и спинномозговые нервы не изменены и не имеется никаких серьезных нарушений. Кожа над дефектом также не изменена, но иногда порок можно заподозрить по небольшой ямочке или пучку волос над ним. Чаще всего дефект выявляется как рентгенологическая находка. О возможной наследственной природе порока свидетельствуют такие данные: скрытые формы расщелины дужек позвонков встречаются у 14,3% матерей, у 6,1 % отцов и у 26,8% сибсов пробандов с различными формами несращения нервной трубки и позвонков.
Более грубым пороком являются кистозная расщелина позвоночника (spina bifida cystia) и полный рахисхиз. Кистозная расщелина характеризуется наличием грыжевого мешка, а полный рахисхиз — дефектом мозговых оболочек, мягких покровов и лежащим открыто в виде пластинки или желоба спинным мозгом (рис. 9.2, Б). В последнем случае нервные валики не соединяются в трубку либо из-за ослабления индуцирующего влияния подлежащей хорды, либо из-за действия тератогенных факторов на нейроэпителиальные клетки.
Пороки развития звукопроводящей системы среднего уха могут быть причиной врожденного нарушения слуха наряду с нарушениями других отделов слухового анализатора. Врожденная фиксация стремечка приводит к врожденной проводниковой глухоте при нормальном развитии уха в остальном. Дефекты молоточка и наковальни часто сочетаются с синдромом первой дуги. Механизмами возникновения подобных пороков развития могут быть нарушения рассасывания (гибели) молодой соединительной ткани в барабанной полости и остановка развития всей области первой висцеральной дуги. Большинство видов врожденной глухоты обусловлены генетически и носят наследственный характер.
Атрезия наружного слухового прохода возникает из-за ослабления процесса канализации (рассасывания пробки наружного слухового прохода) в области первого жаберного кармана. Этот врожденный порок также часто сочетается с синдромом (аномаладом) первой дуги.
Пороки развития пищеварительной системы выражаются в недоразвитии (гипогенезия) или полном отсутствии развития (агенезия) участков кишечной трубки или ее производных, в отсутствии естественного отверстия, сужении канала, персистировании эмбриональных структур, незавершенном повороте и гетерогонии различных тканей в стенку желудочно-кишечного тракта.
Атрезии и стенозы встречаются с частотой примерно 0,8 на 1000 новорожденных. Существует несколько гипотез, объясняющих механизм их возникновения. По одной из них, это персистирование физиологической атрезии, заключающееся во временной закупорке просвета кишечной трубки на 6-й неделе развития в связи с нарушением реканализации. По другой — это сосудистая недостаточность. В эксперименте на собаках путем перевязки у плодов верхней брыжеечной артерии удалось получить некоторые формы атрезии и стеноз. Есть гипотеза внутриутробного воспалительного процесса. Этиология этих пороков гетерогенна. Среди изолированных пороков, по-видимому, большинство мультифакториальны, а среди тех, что являются компонентами множественных врожденных пороков, значительная часть — результат хромосомных и генных мутаций.
Одним из распространенных врожденных пороков средней кишки является незаращение проксимального отрезка внутрибрюшной части желточного протока и выпячивание стенки подвздошной кишки длиной от 1 до 15 см на расстоянии 10—25 см у детей и 40—80 см у взрослых от подвздошно-слепокишечной заслонки. Этот порок получил название дивертикула Меккеля (по имени исследователя). Он обнаруживается примерно у 2% населения (из них в 80% случаев у мужчин). В половине случаев он диагностируется случайно, а в остальных случаях — в связи с воспалительными процессами, непроходимостью и кровотечениями кишечника. В 10% случаев дивертикул Меккеля сочетается с другими врожденными пороками. Некоторые варианты пороков эмбриональных структур желточного протока показаны на рис. 9.3.
Из многочисленных вариантов врожденных пороков прямой кишки и анального отверстия отметим персистирование клоаки (рис. 9.4), возникающее в результате нарушения разделения клоаки на мочеполовой синус и прямую кишку. Этот порок представляет собой недоразвитие мочеполовой перегородки и отражает эволюционно более древнее состояние органа.
Врожденные пороки сердечно-сосудистой системы насчитывают десятки разновидностей. Частота встречаемости —б—10 на 1000 новорожденных. Пороки сердечно-сосудистой системы бывают изолированными и в сочетании с пороками других систем, т.е. множественными пороками. Изолированные пороки чаще мультифакториальные, но известны также доминантные и рецессивные формы. Среди пороков, входящих в группу множественных, поражение сердечно-сосудистой системы часто сопровождается хромосомными и генными синдромами. Пороки сердечно-сосудистой системы в основном представляют собой либо недоразвитие каких-либо структур в эмбриогенезе, либо персистирование этих эмбриональных структур, в то время как они должны видоизменяться и принять дефинитивный вид. Иногда встречаются грубые нарушения топографии сердца и сосудов.
Примеры некоторых врожденных пороков сердца и крупных артерий иллюстрируют вышеизложенные положения. Эктопия сердца — расположение сердца вне грудной полости. Различают шейную, абдоминальную и экстрастернальную эктопию. Шейную эктопию объясняют задержкой перемещения сердца с места формирования его зачатка в шейной области в переднее средостение. Этот порок приводит к гибели сразу после рождения. Он отражает онтофилогенетическую зависимость.
Правосторонняя дуга аорты развивается из эмбриональной правой дуги при редукции левой, или двойные дуги аорты, представленные двумя стволами, из которых один впереди трахеи, а другой позади пищевода. При изолированных пороках такого типа клинические проявления зависят от степени сдавления пищевода и трахеи. Оба связаны с нарушениями дифференцировки эмбриональных артериальных дуг.
Открытый артериальный (боталлов) проток (персистирование артериального протока) встречается с частотой около 1 на 1000 новорожденных.
Тетрада Фалло — стеноз легочного ствола, высокий дефект межжелудочковой перегородки, правосмещение устья аорты и приобретенная гипертрофия правого желудочка. Порок возникает в результате праводеленности артериального конуса и неслияния всех компонентов, образующих межжелудочковую перегородку. Частота — 0,7 на 1000 новорожденных, прогноз неблагоприятный (рис. 9.5).
Вопрос №39.
(Регуляция развития человека и животных на разных этапах онтогенеза. Генетическая регуляция развития (генетическая детерминированность развития, дифференциальная активность генов, влияние ооплазматической сегрегации, Т-локус; гомеозисные и дизруптивные мутации).
Весь процесс развития организма регулируется генетической программой. В большинстве случаев геном всех клеток остается одинаковым. Это означает, что при развитии "нужные гены работают в нужное время и в нужном месте" .
Различными методами ученые пытались определить число генов, которые задействованы в процессах развития. Хотя эти оценки остаются очень приблизительными, можно утверждать, что в ходе развития работает большинство генов организма. Часть генов - так называемые гены домашнего хозяйства - необходимы для жизнедеятельности любой клетки (понятно, что мутации таких генов, приводящие к потере функции, будут летальными). Процент этих генов в геноме, видимо, довольно мал. Большинство же генов - это так называемые гены роскоши. Их продукты необходимы только на определенных стадиях развития и (или) в клетках определенных тканей. Число включенных генов в большинстве случаев снижается со стадии яйцеклетки и до стадии зрелых тканевых клеток. Например, у наиболее изученных в этом отношении морских ежей на стадии зиготы белки считываются примерно с 24000 разных иРНК, на стадии гаструлы - с 11000, а в клетках разных тканей взрослого животного - всего с 2000-4000. Таким образом большинство белков нужно не для функционирования клеток взрослого организма, а для его развития.
Очевидно, что генетический контроль развития существует, ибо как тогда понять, почему из яйца крокодила развивается крокодил, а из яйца человека — человек. Каким образом гены определяют процесс развития? Это центральный и очень сложный вопрос, к которому ученые начинают подходить, но для всеобъемлющего и убедительного ответа на него данных явно недостаточно. Главным приемом ученых, изучающих генетику индивидуального развития, является использование мутаций. Выявив мутации, изменяющие онтогенез, исследователь проводит сравнение фенотипов мутантных особей с нормальными. Это помогает понять, как данный ген влияет на нормальное развитие. С помощью многочисленных сложных и остроумных методов стараются определить время и место действия гена.
Анализ генетического контроля затрудняется несколькими моментами. Прежде всего тем, что роль генов неодинакова. Часть генома состоит из генов, определяющих так называемые жизненно важные функции и отвечающих, например, за синтез тРНК или ДНК-полимеразы, без которых невозможно функционирование ни одной клетки. Эти гены названы «house keeping» или генами «домашнего хозяйства». Другая часть генов непосредственно участвует в детерминации, дифференцировке и морфогенезе, т.е. функция их, по-видимому, более специфическая, ключевая.
Для анализа генетического контроля необходимо, кроме того, знать место первичного действия данного гена, т.е. следует различать случаи относительной, или зависимой, плейотропии от прямой, или истинной, плейотропии. В случае относительной плейотропии, как, например, при серповидно-клеточной анемии, существует одно первичное место действия мутантного гена — гемоглобин в эритроцитах, а все остальные наблюдаемые при ней симптомы, такие, как нарушение умственной и физической деятельности, сердечная недостаточность, местные нарушения кровообращения, увеличение и фиброз селезенки и многие другие, возникают как следствие аномального гемоглобина. При прямой плейотропии все разнообразные дефекты, возникающие в различных тканях или органах, вызываются непосредственным действием одного и того же гена именно в этих разных местах.
Наконец, следует различать еще два способа действия мутаций на фенотип, вызывающих дизруптивные либо гомеозисные изменения. В первом случае, и это бывает чаще всего, мутации приводят к нарушению нормального развития, отсутствию или аномальному строению органов. В других случаях отклонение от нормы заключается в том, что под действием мутации типичный орган замещается гомологичным или совсем другим, но с нормальным строением. Это особый класс мутаций, описанный у насекомых и получивший название гомеозисных мутаций.
Примером гомеозисных мутаций являются мутации в ВХ-С и ANT-C-комплексах генов у дрозофилы (рис. 8.14). ВХ-С (Bithorax Complex) и ANT-C (Antennapedia Complex) — это два набора генов, представляющих собой два кластера тесно сцепленных между собой генов, находящихся в одном плече 3-й хромосомы (рис. 8.15). В группу ВХ-С входит не менее 10 генов, которые отвечают за индивидуальность сегментов тела, расположенных сзади от среднегрудного сегмента. Чем больше дистальных локусов ВХ-С подвергается делении, тем больше брюшных сегментов превращается в грудные. При делении всего комплекса ВХ-С все сегменты от заднегрудного до 8-го брюшного превращаются в среднегрудь. В группу ANT-C входит не менее шести генов. Усиление в результате мутации функции этой группы вызывает превращение антенны в ногу, как должно быть в грудных сегментах.
Обширные генетические исследования гомеозисных мутаций у дрозофилы показали, что эти комплексы генов отвечают за направление развития сегментов тела, т.е. являются как бы морфогенетическими переключателями. Этот вывод имеет большое теоретическое значение, так как позволяет предположить наличие таких генов-переключателей направления развития и у других видов организмов.
В предыдущих разделах были приведены примеры генетически запрограммированных процессов клеточного деления, клеточных миграций, клеточной гибели и клеточной дифференцировки, которые проявляются избирательно, т.е. в определенный период и в определенном месте. Можно привести еще множество примеров мутаций, которые показывают, как и когда действуют гены.
Существуют мутации, которые указывают на существование у многих видов животных так называемых генов с материнским эффектом. Особенность этих генов состоит в том, что материнский геном во время овогенеза продуцирует ферменты, необходимые для метаболизма раннего зародыша, а также передает информацию, касающуюся расположения и организации структур зародыша, т.е. оказывает влияние на морфогенез. Поэтому самка, гомозиготная по рецессивному мутантному аллелю и продуцирующая аномальные яйца, даже при скрещивании с нормальным самцом дает нежизнеспособное потомство. Сама же она развивалась вполне нормально, поскольку ее мать в этом случае могла быть только гетерозиготной и в ее яйцах были все факторы, необходимые для раннего развития. Интересно, что если в дефектные яйца рецессивной самки ввести цитоплазму от нормальных яиц, то зародыши будут спасены. Факторы, детерминируемые генами с материнским эффектом, обычно оказывают свое влияние на зародыш до периода гаструляции. Начиная с гаструляции все большую роль играет информация самого зародыша.
Известны и другие мутации, оказывающие влияние на раннее развитие, но не связанные с материнским эффектом. К ним относятся, например, мутации рибосомных генов. У шпорцевой лягушки (Xenopus laevis) мутанты были лишены части или всех рибосомных генов. Цитологически это проявлялось в полном или частичном отсутствии ядрышка. В гомозиготном состоянии мутантных аллелей зародыши становятся полностью нежизнеспособными на стадии выклева, так как у них не образуются новые рибосомы, а те, что были запасены в яйце, уже полностью использованы.
У мышей также известен целый ряд рецессивных мутаций сложного локуса Т 17-й хромосомы, затрагивающих раннее развитие. Локус Т представлен множеством (117) аллелей, обозначаемых знаком t с дополнительными индексами: t1, t2, t3 и т.д. Около 30% t-генов в гомозиготном состоянии вызывает гибель зародышей, часть аллелей являются полулетальными. Весь этот ряд рецессивных аллелей t распадается на восемь групп, которые могут быть комплементарны друг другу и в гетерозиготном состоянии не приводить к гибели зародыша.
Известны также и пять доминантных мутаций Т-локуса. Каждая из восьми групп обусловливает разного рода дефекты. Один из аллелей останавливает превращение морулы в бластоцисту, состоящую из трофобласта и эмбриобласта. Такие морулы гибнут. Другая мутация приводит к тому, что развившийся трофобласт не вступает в контакт со стенкой матки и зародыш тоже гибнет. Третьи мутантные зародыши не образуют внезародышевой эктодермы, у четвертых — гибнут клетки зародышевой эктодермы, у пятых — клетки зародышевой эктодермы не способны мигрировать в области первичной полоски и образовывать мезодерму, у шестых — уже образовавшиеся структуры нервной системы дегенерируют и т.д. Первичное нарушение, лежащее в основе всех этих эффектов, всего лишь одного локуса пока не выяснено. Однако очевидно, что локус Т играет первостепенную роль в морфогенезе эктодермы мышиного зародыша и организма в целом.
Органогенез — период, когда действие мутаций проявляется в большой мере. Развитие каждого органа и тем более системы органов контролируется совокупным координированным действием сотен генов. У человека известны свыше 120 форм наследственной глухоты, которые возникают в результате экспрессии мутантных генов, отвечающих за формирование слухового анализатора. У человека описано также около 250 наследственных поражений глаз, около 150 наследственных аномалий развития скелета, не менее 18 генов, отвечающих за нормальную дифференциацию пола. О значении генетического контроля онтогенеза говорят многочисленные болезни, связанные с геномными и хромосомными мутациями.
В целом генетический контроль онтогенеза очевиден, однако в процессе развития зародыш и его части обладают способностью к саморазвитию, регулируемому самой целостной развивающейся системой и не запрограммированному в генотипе зиготы.
Вопрос №40.
(Нервная регуляция онтогенеза. Взаимодействие нервных центров с иннервируемыми органами. Механизмы и уровни гуморальной регуляции. Последствия нарушения нервной и гормональной регуляции. Примеры).
Нервная регуляция начинается с закладки отделов ЦНС и продолжается в течение жизни особи.
Взаимодействие между центрами ЦНС и иннервируемыми органами устанавливается на ранних этапах эмбриогенеза, причем эти структуры взаимно стимулируют развитие друг на друга. Отходящие от центров ЦНС периферические нервы подрастают к зачаткам органов и стимулируют их развитие. Отсутствие периферических нервов или их повреждение (например лекарственными препаратами, токсинами токсоплазмы и др.) вызывает нарушение формирования иннервируемых ими структур. Так, например, в Европе родилось несколько сотен детей с отсутствием конечностей, матери которых в период беременности принимали снотворное талидомид, блокирующее рост периферических нервов.
В постнатальном периоде сохраняется взаимосвязь между нервной системой и иннервируемыми органами. Родовые травмы головного мозга и периферических нервов приводят не только к параличам, но и к атрофии мышц и отставанию роста соответствующих конечностей или односторонней гипотрофии структур лица (при врожденном параличе VI-VII нервов). Способствуют восстановлению поврежденных структур головного и спинного мозга пассивные движения конечностей (для этого созданы специальные аппараты), массаж и физиотерапевтическая стимуляция иннервируемых органов. При нейрофиброматозе (аутосомно-доминантный тип наследования) развиваются опухоли периферических нервов. Если заболевание начинается в раннем детстве, то на той стороне тела, где развиваются опухоли, возникает гипертрофия костей и мягких тканей. Например, развивается дизморфоз лица (несимметричное, непропорциональное развитие структур формирующих лицо, рисунок приложения 5).
Установлено, что в раннем детстве игры, способствующие движению кистей рук, особенно мелкие, точные формы деятельности, стимулируют развитие структур головного мозга, в том числе и развитие интеллекта.Отсутствие конечности может быть обусловлено действием нейротропных тератогенов (токсины при токсоплазмозе, талидомид и др.).
Удаление зачатка конечности у зародыша аксолотля приводит к уменьшению размеров ганглиев и рогов серого вещества спинного мозга на оперированной стороне.
В организме клетки, ткани, органы и системы органов работают как единое целое. Их согласованная работа регулируется двумя способами: с помощью химических веществ через жидкие среды организма (кровь, лимфу, межклеточную жидкость) - этот способ называется гуморальным, - и с помощью нервной системы.
Головной и спинной мозг связан нервами со всеми органами. Мозг регулирует работу органов посредством нервных импульсов. Нервная система возбуждает или тормозит функции организма. Изменение функций организма определяется условиями внешней и внутренней среды. Мозг постоянно получает информацию о данном изменении. Между мозгом и всеми органами существуют двухсторонние связи: от органов к мозгу и от мозга к органам. Благодаря двусторонним связям мозг обеспечивает соответствие работы органов потребностям организма.
Основными структурными элементами нервной системы являются нейроны, из которых построены функциональные элементы нервной системы - рефлекторные дуги. В основе деятельности нервной системы лежит рефлекс - ответ на раздражение организма при участии нервной системы.
В головном мозге выделяют ствол, мозжечок и большой мозг. К стволу относятся: продолговатый мозг, мост, средний, промежуточный мозг. Каждый отдел мозга выполняет определенные функции. В головном и спинном мозге различают белую и серое вещество. Белое вещество составляют отростки нейронов, обеспечивающих передачу нервных импульсов, а серое - тела нейронов.
Большой мозг состоит из двух полушарий. Каждое полушарие складчатая и разделена бороздами на лобную, теменную, височную и затылочную доли. В коре большого мозга различают чувствительные, двигательные и ассоциативные зоны. В височной доле находится слуховая зона. В участке коры за центральной бороздой лежит зона кожно-мышечной чувствительности. Кроме того, в коре большого мозга выделяют зоны вкусовой и обонятельной чувствительности. Перед центральной бороздой расположена двигательная зона коры. Ассоциативные зоны объединяют деятельность двигательных и сенсорных зон, обеспечивают интегрирующую функцию мозга. С деятельностью ассоциативных зон связаны высшие психические функции: память, речь, мышление, сознание, регуляции поведения. Кора функционирует как единое целое и является материальной основой психической деятельности человека.
Гуморальные регуляции осуществляются за счет передачи сигналов с помощью биологически активных веществ через жидкие среды организма. К биологически активным веществам организма относят: гормоны, нейромедиаторы, простагландины, цитокины, факторы роста, эндотелии, азота оксид и ряд других веществ. Для выполнения их сигнальной функции достаточно очень малого количества этих веществ. Например, гормоны выполняют свою регуляторную роль при концентрации их в крови в пределах 10-7 - 10-10 моль/л.
Гуморальные регуляции подразделяют на эндокринные и местные.
Эндокринные регуляции осуществляются благодаря функционированию желез внутренней секреции (эндокринных желез), которые представляют собой специализированные органы, выделяющие гормоны. Гормоны - биологически активные вещества, вырабатываемые эндокринными железами, переносимые кровью и оказывающие специфические регуляторные влияния на жизнедеятельность клеток и тканей. Отличительной особенностью эндокринных регуляций является то, что железы внутренней секреции выделяют гормоны в кровь и таким путем эти вещества доставляются практически ко всем органам и тканям. Однако ответная реакция на действие гормона может быть лишь со стороны тех клеток (мишеней), на мембранах, в цитозоле или ядре которых имеются рецепторы к соответствующему гормону.
Отличительной особенностью местных гуморальных регуляций является то, что биологически активные вещества, вырабатываемые клеткой, не поступают в кровоток, а действуют на продуцирующую их клетку и ее ближайшее окружение, распространяясь за счет диффузии по межклеточной жидкости. Такие регуляции подразделяют на регуляцию обмена веществ в клетке за счет метаболитов, аутокринию, паракринию, юкстакринию, взаимодействия через межклеточные контакты.
Регуляция обмена веществ в клетке за счет метаболитов. Метаболиты - конечные и промежуточные продукты процессов обмена веществ в клетке. Участие метаболитов в регуляции клеточных процессов обусловлено наличием в обмене веществ цепочек функционально связанных биохимических реакций - биохимических циклов. Характерно, что уже в таких биохимических циклах имеются главные признаки биологических регуляций, наличие замкнутого контура регулирования и отрицательной обратной связи, обеспечивающей замыкание этого контура. Например, цепочки таких реакций используются при синтезе ферментов и веществ, участвующих в образовании аденозинтрифосфорной кислоты (АТФ). АТФ - вещество, в котором аккумулируется энергия, легко используемая клетками для самых разных процессов жизнедеятельности: движения, синтеза органических веществ, роста, транспорта веществ через клеточные мембраны.
Вопрос №41.
(Межклеточные взаимодействия на разных этапах онтогенеза. Эмбриональная индукция, её виды. Опыты Г. Шпемана в изучении явления эмбриональной индукции).
Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с началаXX в. изучает экспериментальная эмбриология.
Классическими считают опыты немецкого ученого Г. Шпемана и его сотрудников (1924) на зародышах амфибий. Для того чтобы иметь возможность проследить за судьбой клеток определенного участка зародыша, Шпеман использовал два вида тритонов: тритона гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.
Один из опытов заключается в следующем: кусочек зародыша из области дорсальной губы бластопора на стадии гаструлы тритона гребенчатого пересаживают на боковую или вентральную сторону гаструлы тритона полосатого (рис. 8.8). В месте пересадки происходит развитие нервной трубки, хорды и других органов. Развитие может достичь довольно продвинутых стадий с образованием дополнительного зародыша на боковой или вентральной стороне зародыша реципиента. Дополнительный зародыш содержит в основном клетки зародыша реципиента, но светлые клетки зародыша-донора тоже обнаруживаются в составе различных органов.
Из этого и подобных опытов следует несколько выводов. Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует, или индуцирует, развитие зародыша как в обычном, так и в нетипичном месте. Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное (предполагаемое) проспективное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш. В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом, регулируя его в целях достижения этого результата.
Г. Шпеман назвал спинную губу бластопора первичным эмбриональным организатором. Первичным потому, что на более ранних стадиях развития подобных влияний обнаружить не удавалось, а организатором потому, что влияние происходило именно на морфогенез. В настоящее время установлено, что главная роль в спинной губе бластопора принадлежит хордомезодермальному зачатку, который назвали первичным эмбриональным индуктором, а само явление, при котором один участок зародыша влияет на судьбы другого,— эмбриональной индукцией.
Внимание эмбриологов переключилось на индуцируемые ткани. Оказалось, что специфичность действия индуктора-раздражителя может быть весьма различной, а сам эффект индуцирующего воздействия ограничивается способностью того или иного участка развивающегося зародыша воспринимать это воздействие и отвечать на него.
Некоторые индукторы, по-видимому, более или менее специфичны в определении судьбы индуцируемой ткани. Об этом свидетельствуют следующие опыты. Если пересадить спинную губу ранней гаструлы, то индуцируется развитие структур переднего мозга (головной индуктор), если же пересадить спинную губу поздней гаструлы, то развиваются спинной мозг и мезодермальные ткани (туловищный индуктор, рис. 8.9). Было показано также, что наиболее сильное нейрализующее влияние оказывает фракция нуклеопротеинов, а мезодермализующим индуктором оказался белок. Если имплантировать оба эти индуктора в виде смеси клеток или смеси веществ, то получаются хорошо развитые зародыши.
Другие индукторы действуют как неспецифические пусковые механизмы, как бы высвобождая ответ, уже детерминированный в клетках индуцируемой ткани. Было показано, что, например, слуховой пузырек выступает не только в роли индуктора слухового аппарата, но и является активатором различных морфогенетических процессов. Будучи пересажен в область боковой линии эмбриона тритона, он влечет за собой индукцию конечности. Конечность можно индуцировать также пересадкой носовой плакоды или гипофиза. Легче всего добавочные конечности индуцируются в области боковой линии, но они могут быть получены и на брюшной стороне. Эти примеры указывают на то, что специфический ответ зависит не столько от индуктора, сколько отреагирующей области.
Для проверки индукционных взаимодействий между ними анимальный ярус бластомеров поворачивали на 180° так, чтобы задний анимальный бластомер терял контакт с задним вегетативным. Головной ганглий не развился нигде. Это означает, что для развития головного ганглия необходимо индукционное влияние на задний анимальный бластомер со стороны заднего вегетативного. Кроме того, очевидно, что задний анимальный бластомер не обладает автономностью развития, но только он компетентен к восприятию воздействия со стороны заднего вегетативного бластомера, содержащего хордомезодермальный зачаток.
Во всех других классах хордовых индукционные взаимодействия между хордомезодермальным и нейральным зачатками подобны таковым у амфибий. Полагают, что в ходе эволюции хордовых произошли расширение областей и удлинение срока компетенции. Это расценивают как признак существенного эволюционного прогресса.
Явления индукции многочисленны и разнообразны. Помимо первичной индукции со стороны спинной губы бластопора описаны индукционные влияния на более поздних, нежели гаструляция, этапах развития. Все они являются вторичными и третичными, представляя собой каскадные взаимодействия, типичные для дифференцировки, потому что индукция многих структур зависит от предшествующих индукционных событий. Примером вторичной индукции может служить действие глазного бокала (выпячивание переднего мозга) на прилежащий покровный эпителий, под влиянием чего эпителий впячивается, а затем отшнуровывается хрусталиковый пузырек—зачаток глазного хрусталика (рис. 8.11). Расположенный над хрусталиком покровный эпителий тоже испытывает сложные изменения, теряет пигмент и становится роговичным эпителием. Это пример третичной индукции. Таким образом получается, что глазной бокал возникает только после развития передней части головного мозга, хрусталик — после формирования бокала, а роговица — после образования хрусталика.
Вместе с тем индукция носит не только каскадный, но и переплетающийся характер, т.е. в индукции той или иной структуры может участвовать не одна, а несколько тканей. В свою очередь, такая структура может служить индуктором для нескольких других тканей. Например, глазной бокал служит главным, но не единственным индуктором хрусталика. Морфогенез всегда сопровождается значительными перемещениями тканей друг относительно друга. Так, презумптивный хрусталик, т.е. эпидермис, из которого в последующем должен развиться хрусталик, во время гаструляции лежит над энтодермой будущей глотки, которая служит первым индуктором хрусталика. Затем под этим эпидермисом оказывается сердечная мезодерма, которая тоже действует как индуктор. И только позднее, во время нейруляции на переднем конце нервной трубки выпячиваются глазные пузыри, образующие глазной бокал и сетчатку, являющуюся главным индуктором хрусталика (рис. 8.12).
Чаще всего близлежащие участки зародыша оказывают взаимное влияние друг на друга. Демонстративным примером являются взаимодействия в зачатке конечности. Конечность развивается из скопления клеток, происходящих из боковой мезодермы, и покрывающих их клеток эктодермы. Развитие конечности начинается с активации клеток боковой мезодермы в непосредственной близости от сомитов, которые, возможно, и о