Температура тела человека и изотермия.
Способность организма человека сохранять постоянную температуру обусловлена сложными биологическими и физико-химическими процес-сами терморегуляции. В отличие от холоднокровных (пойкилотермных) животных температура тела теплокровных (гомойотермных) животных при колебаниях температуры внешней среды поддерживается на опреде-ленном уровне, наиболее выгодном для жизнедеятельности организма. Поддержание теплового баланса осуществляется благодаря строгой сораз-мерности в образовании тепла и в ее отдаче.
Величина теплообразования зависит от интенсивности химических реакций, характеризующих уровень обмена веществ. Теплоотдача регули-руется преимущественно физическими процессами.
Химическая терморегуляция осуществляется путем изменения уров-ня теплообразования, т.е. усиления или ослабления интенсивности обмена веществ в клетках организма. Все механизмы, которые регулируют окис-лительные процессы, регулируют и теплообразование.
Физическая терморегуляция осуществляется путем изменения ин-тенсивности отдачи тепла организмом.
Центром терморегуляции в организме человека является гипоталамус.
Температура тела человека и изотермия
Температура тела человека и высших животных поддерживает-ся на относительно постоянном уровне,несмотря на колебания темпе-ратуры внешней среды. Это постоянство температуры тела носит назва-ние изотермии.Изотермия в процессе онтогенеза развивается постепенно. У новорожденных детей она далеко не совершенна и устойчивый характер приобретает с возрастом. Перераспределение тепла между тканями осуще-ствляется кровью. Кровь, обладая высокой теплоемкостью, переносит теп-ло от тканей с высоким уровнем теплообразования к тканям, где тепло об-разуется в небольших количествах. В результате выравнивается уровень температуры в различных частях тела.
58. Механизмы теплообразования
Образование тепла в организме происходит главным образом в ре-зультате химических реакций обмена веществ. При окислении пищевых компонентов и других реакций тканевого метаболизма образуется тепло.
Величина теплообразования находится в тесной связи с уровнем метабо-лической активности организма. Поэтому теплопродукцию называют так-же химической терморегуляцией. Химическая терморегуляция имеет особо важное значение для поддержания постоянства температуры тела в усло-виях охлаждения. При понижении температуры окружающей среды про-исходит увеличение интенсивности обмена веществ и, следовательно, теп-лообразования. У человека усиление теплообразования отмечается в том случае, когда температура окружающей среды становится ниже оптималь-ной температуры (или зоны комфорта). В обычной легкой одежде эта зона находится в пределах 18 – 20°, а для обнаженного человека – 28°С.
Суммарное теплообразование в организме происходит в ходе хими-ческих реакций обмена веществ (окисление, гликолиз), что составляет так называемое первичное тепло и при расходовании энергии макроэргиче-ских соединений (АТФ) на выполнение работы (вторичное тепло). В виде первичного тепла в тканях рассеивается 60 – 70 % энергии. Остальные 30 – 40 % после расщепления АТФ обеспечивают работу мышц, различные процессы синтеза, секреции и др. Но и при этом та или иная часть энергии переходит затем в тепло. Таким образом, и вторичное тепло образуется вследствие экзотермических химических реакций, а при сокращении мышечных волокон – в результате их трения. При продолжительном охлаждении организма возникают непроизвольные периодические сокращения скелетной мускулатуры (холодовая дрожь). При этом почти вся метаболическая энергия в мышце освобождается в виде тепла. Активация в условиях холода симпатической нервной системы стимулирует липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Наконец, повышение теплопродукции связано с усилением функций надпочечников и щитовидной железы. Гормоны этих желез, усиливая обмен веществ, вызывает повышенное теплообразование.
Механизмы теплоотдачи
Отдача тепла организмом осуществляется путем излучения,прове-дения и испарения.
Излучением путем лучеиспускания за счет инфракрасной части спектра теряется примерно 50 – 55 % тепла в окружающую среду . Количе-ство тепла, рассеиваемого организмом в окружающую среду с излучением, пропорционально площади поверхности частей тела, которые соприкаса-ются с воздухом, и разности средних значений температур кожи и окру-жающей среды. Отдача тепла излучением прекращается, если выравнива-ется температура поверхности кожи и окружающей среды.
Теплопроведение может происходить путем кондукции и конвек-ции.Кондукцией тепло теряется при непосредственном контакте участков тела человека с другими физическими средами. При этом количество те-ряемого тепла пропорционально разнице средних температур контакти-рующих поверхностей и времени теплового контакта. Конвекция – способ теплоотдачи организма, осуществляемый путем переноса тепла движущи-мися частицами воздуха. Конвекцией тепло рассеивается при обтекании поверхности тела потоком воздуха с более низкой температурой, чем тем-пература кожи. Движение воздушных потоков (ветер, вентиляция) увели-чивают количество отдаваемого тепла. Путем теплопроведения организм теряет 15 – 20 % тепла, при этом конвекция представляет более мощный механизм теплоотдачи, чем кондукция.
Теплоотдача путем испарения – это способ рассеивания организ-мом тепла (около 30 %) в окружающую среду за счет его затраты на испа-рение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды 20° испарение влаги у человека составля-ет 600 – 800 г в сутки. При переходе в воздух 1 г воды организм теряет 0,58 ккал тепла. Если внешняя температура превышает среднее значение температуры кожи, то организм не отдает во внешнюю среду тепло излуче-нием и проведением, а наоборот, поглощает тепло извне. Испарение жидко-сти с поверхности тела происходит при влажности воздуха менее 100 %.
Регуляция теплообмена
Регуляция теплообмена обеспечивает баланс между количеством продуцируемого в единицу времени тепла и количеством тепла, рассеи-ваемого организмом за то же время в окружающую среду. В результате температура тела человека поддерживается на относительно постоянном уровне. Восприятие и анализ температуры окружающей среды осуществ-ляется с помощью терморецепторов. Терморецепторы имеются в коже, мышцах, сосудах, во внутренних органах, дыхательных путях, спинном и среднем мозге. Одни из них реагируют на холод (холодовые рецепторы), которых на поверхности тела человека насчитывается около 250 000, дру-гие – на тепло, их примерно 30 000. Разветвленная сеть терморецепторов обеспечивает подробную информацию о темпера-турных сдвигах во внешней и внутренней среде организма, которая посту-пает в высшие центры теплообмена. Центральный аппарат терморегуляции находится в передней и задней части гипоталамуса, а также в ретикуляр-ной формации среднего мозга. Центр терморегуляции содержит различные по функциям группы нервных клеток. Термочувствительные нейроны пе-реднего гипоталамуса поддерживают базальный уровень температуры тела в организме человека. Эффекторные нейроны заднего гипоталамуса и среднего мозга управляют процессами теплопро-дукции и теплоотдачи. Важная роль в терморегуляции принадлежит высшим отделам ЦНС – коре и ближайшим подкорковым центрам. Эмоциональное возбуждение, изменения в психическом состоянии оказывают существенное влияние на уровень теплообразования и теплоотдачи. Отчетливые изменения темпера-туры тела наблюдаются у спортсменов при стартовом возбуждении. При длительной мышечной работе температура тела может повышаться до 39 – 40° и более. В осуществлении гуморальной регуляции теплообмена участвуют железы внутренней секреции, главным образом, щитовидная и надпочеч-ники. Участие щитовидной железы в терморегуляции обусловлено тем, что влияние пониженной температуры приводит к усиленному выделению ее гормонов, повышающих обмен веществ, и, следовательно, теплообразова-ние. Роль надпочечников связана с выделением ими в кровь катехолами-нов, которые, усиливая окислительные процессы в тканях, в частности, в мышцах, увеличивают теплопродукцию и суживают кожные сосуды, уменьшая теплоотдачу.
Свертывание крови.
Жидкое состояние крови и замкнутость кровеносного русла являются необходимыми условиями жизнедеятельности организма. Эти условия создает система свертывания крови (система гемокоагуляции), сохраняющая циркулирующую кровь в жидком состоянии и предотвращающая ее потерю через поврежденные сосуды посредством образования кровяных тромбов; остановка кровотечения называется гемостазом.
Вместе с тем, при больших кровопотерях, некоторых отравлениях и заболеваниях возникает необходимость в переливании крови, которое должно осуществляться при строгом соблюдении ее совместимости.
Основоположником современной ферментативной теории свертывания крови является профессор Дерптского (Тартуского) университета А. А. Шмидт (1872). В дальнейшем эта теория была значительно дополнена и в настоящее время считают, что свертывание крови проходит 3 фазы:
■ образование протромбиназы;
■ образование тромбина; - образование фибрина.
Образование протромбиназыосуществляется под влиянием тром-бопластина (тромбокиназы), представляющего собой фосфолипиды разрушающихся тромбоцитов, клеток тканей и сосудов. Тромбопластин формируется при участии ионов Са2+ и некоторых плазменных факторов свертывания крови.
Вторая фазасвертывания крови характеризуется превращением неактивного протромбина кровяных пластинок под влиянием протромбиназы в активный тромбин. Протромбин является глюкопротеидом, образуется клетками печени при участии витамина К.
В третьей фазесвертывания из растворимого фибриногена крови, активированного тромбином, образуется нерастворимый белок фибрин, нити которого образуют основу кровяного сгустка (тромба), прекращающего дальнейшее кровотечение. Фибрин служит также структурным материалом при заживлении ран. Фибриноген представляет собой самый крупномолекулярный белок плазмы и образуется в печени.