Ультразвук - это процесс распространения, колебаний в уп-пугой среде в виде продольных волн с частотой свыше 20 кГц.
КОЛЕБАНИЯ, ВОЛНЫ, ЗВУК
Любые отклонения физического тела или параметра его состояния, то в одну, то в другую сторону от положения равновесия называется колебательным движением или просто колебанием.
Колебательное движение называется периодическим, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими называются колебания, совершающиеся по законуsin или cos.
s = Asin (ωt +φ0), s = Acos (ωt +φ0)
Они совершаются под действием квазиупругих сил, т.е. сил, пропорциональных смещению
F = -kx
Основными характеристиками колебаний являются:
1. Смещение (s) — это расстояние, на которое отклоняется колеблющаяся система в данный момент времени, от положения равновесия.
2. Амплитуда (А) — максимальное смещение.
3. Период (Т) — время одного полного колебания.
4. Линейная частота (v) — это число колебаний в единицу времени, измеряется в Гц - это одно колебание в сек. v = 1/Т.
5. Циклическая или круговая частота (ω). Она связана с линейной частотой следующей зависимостью: ω= 2πv.
6. Фаза колебания (φ) характеризует состояние колеблющейся системы в любой момент времени: φ = ωt + φ0, φ0- начальная фаза колебания.
Колебательный процесс можно представить графически в виде развернутой или векторной диаграммы.
Развернутая диаграмма представляет собой график синусоиды или косинусоиды, по которому можно определить смещение колеблющейся системы в любой момент времени.
Однако, любое сложное колебание можно представить в виде суммы гармонических. Это положение определяет специальный метод диагностики -спектральный анализ.
Совокупность гармонических составляющих, на которые разлагается сложное колебание, называется гармоническим спектром этого колебания.
Колебания распределяются на следующие основные виды:
1. Свободные - это идеальные колебания, которые не существуют в природе, но помогают понять сущность других видов колебаний и определить свойства реальной колебательной системы. Они совершаются с собственной частотой, которая зависит только от свойств самой колеблющейся системы. Собственную частоту и период будем обозначать v0 и То.
2. Затухающие - это колебания, амплитуда которых со временем уменьшается, а частота не меняется и близка к собственной. Энергия в систему подается один раз. Уменьшение амплитуды за единицу времени характеризуется коэффициентом затухания β= r / 2m, где r - коэффициент трения, m - масса колеблющейся системы. Уменьшение амплитуды за период характеризуется логарифмическим декрементом затухания δ = βТ. Логарифмический декремент затухания — это логарифм отношения двух соседних амплитуд: δ = lg (Аt / A t+T) .
3. Вынужденные - это колебания, которые совершаются под действием периодически изменяющейся внешней силы. Они совершаются с частотой вынуждающей силы. Явление резкого увеличения амплитуды колебаний при приближении частоты вынуждающей силы к собственной частоте системы называется резонансом. Это увеличение будет зависеть от амплитуды вынуждающей силы, массы системы и коэффициента затухания.
4. Автоколебаниями называются незатухающие колебания, существующие в какой-либо системе при отсутствии переменного внешнего воздействия, а сами системы — автоколебательными. Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы. Автоколебательная система состоит из трех основных элементов: 1) собственно колебательная система; 2) источник энергии; 3) механизм обратной связи. Ярким примером такой системы в биологии является сердце.
Определим энергию тела массой m, совершающего свободные гармонические колебания с амплитудой А и циклической частотой ω.
s = Asin ωt
Полная энергия складывается из потенциальной и кинетической энергии:
W=Wn+Wk
Wn=ks2/2=(kA2/2)sin2ωt, где k=mω
W=mυ2/2, учитывая, что υ=ds/dt=Aωcosωt
получим Wk=(mω2A2/2)*cos2ωt
Тогда полная энергия:
W=(mω2A2/2)(sin2ωt+cos2ωt)=(mω2A2)/2
Процесс распространения колебаний в пространстве называется волновым движением или просто волной.
Известны два вида волн: механические и электромагнитные. Механические волны распространяются только в упругих средах. Механические волны делятся на два вида: поперечные и продольные.
Если колебания частиц совершаются перпендикулярно направлению распространения волны, то она называется поперечной.
Если, колебания частиц совпадают с направлением распространения волны, то она называется продольной.
Рассмотрим, основные характеристики волнового движения. К ним относятся:
1. Все параметры колебательного процесса (s, A, v, ω, Т, φ).
2. Дополнительные параметры, характеризующие только волновое движение:
а) Фазовая скорость (υ) - это скорость, с которой колебания распространяются в пространстве.
б) Длина волны (λ) - это наименьшее расстояние между двумя частицами волнового пространства, колеблющихся в одинаковых фазах или расстояние, на которое распространяется волна за время одного периода. Характеристики связаны между собой: λ=υT, λ=υv
Колебательное движение любой частицы волнового пространства определяется уравнением волны. Пусть в точке О колебания совершаются по закону: S = A sinωt
Тогда в произвольной точке С закон колебаний: sc = sinω (t-∆t), где ∆t=x/υ=x/λv, xc=Asin(2πv t-(2πvx/λx))
s = Asin (ωt-2πх/λ) — это уравнение волны. Оно определяет закон колебания в любо й точке волнового пространства 2πх/λ = φ0 называется начальной фазой колебания в произвольной точке пространства.
3. Энергетические характеристики волны:
а. Энергия колебания одной частицы: W = (mω2A2)/2
б. Энергия колебания всех частиц, содержащихся в единице объема волнового пространства, называется объемной плотностью энергии: ε = W0/V
где Wo = εV есть полная энергия всех колеблющихся частиц в любом объеме.
Если n0 — концентрация частиц, то ε = n0W = n0mω2A2/2, но nom = p, тогда ε = (pω2A2)/2
Энергия колебания постоянно передается другим частицам по направлению распространения волны.
Величина, численно равная среднему значению энергии, переносимой волной в единицу времени через некоторую поверхность, перпендикулярную направлению распространения волны, называется потоком энергии через эту поверхность.
Ps=W0/t (Вт)
Поток энергии, приходящийся на единицу поверхности, называется плотностью потока энергии или интенсивностью волны.
J=Ps/s = W0/st (Вт)
Частным случаем механических волн являются звуковые волны:
Звуковыми волнами называются колебания частиц, распространяющихся в упругих средах в виде продольных волн с частотой от 16 до 20000 Гц.
Для звуковых волн справедливы те же характеристики, что и для любого волнового процесса, однако имеется и некоторая специфика.
1. Интенсивность звуковой волны называют силой звука.J=Ps/s (Вт/м2)
Для этой величины приняты специальные единицы измерения- Белы (Б) и децибелы (дцБ). Шкала силы звука, выраженная в Б или дцБ, называется логарифмической. Для перевода из системы СИ в логарифмическую шкалу используется следующая формула: J (с) =LgJ/J0 (Вт/м2)
где Jo = 10-12 Вт/м2 - некоторая пороговая интенсивность.
2. Для описания звуковых волн используется величина, которая называется звуковым давлением.
Звуковым или акустическим давлением называется добавочное давление (избыточное над средним давлением окружающей среды) в местах наибольшего сгущения частиц в звуковой волне.
В системе СИ оно измеряется в Па, а внесистемной единицей является 1 акустический бар = 10-1Па.
3. Важное значение имеет так же форма колебаний частиц в звуковой волне, которая определяется гармоническим спектром звуковых колебаний (∆v).
Все перечисленные физические характеристики звука называются объективными, т.е. не зависящими от нашего восприятия. Они определяются с помощью физических приборов. Наш слуховой аппарат способен дифференцировать (различать) звуки по высоте тона, тембру и громкости. Эти характеристики слухового ощущения называются субъективными. Изменение в восприятии звука на слух всегда связано с изменением физических параметров звуковой волны.
Высота тона определяется главным образом частотой колебаний в звуковой волне и незначительно зависит от силы звука. Чем больше частота, тем выше тон звука. В этом отношении диапазон звуков, воспринимаемых слуховым аппаратом, делится на октавы: 1- (16-32) Гц; 2 -(32-64)Гц; 3-(64-128) Гц; и т.д., всего 10 октав.
Если колебания частиц в звуковой волне гармонические, то такой тон звука называется простым или чистым. Такие звуки дают камертон и звуковой генератор.
Если колебания не гармонические, но периодические, то такой тон звука называется сложным. .
Если сложные звуковые колебания не периодически меняют свою интенсивность, частоту и фазу, то такой звук принято называть шумом.
Сложные тона одной и той же высоты, в которых форма колебаний различна, по разному воспринимаются человеком (например, одна и та же нота на различных музыкальных инструментах). Это различие в восприятии носит название тембра звука. Он определяется спектром частот гармонических колебаний, из которых состоит сложный звук.
Громкость восприятия звука зависит главным образом от силы звука, а так же от частоты. Эта зависимость определяется психофизическим законом Вебера-Фехнера:
При возрастании силы звука в геометрической прогрессии (J,J2, J3,...) ощущение громкости на одной и той же частоте увеличивается в арифметической прогрессии (Е, 2Е, ЗЕ,...).
E=kLg J/J0
где k - коэффициент, зависящий от частоты звука. Громкость измеряется также как и сила звука в Белах (Б) и децибелах (дцБ). ДцБ громкости называется фоном (Ф) в отличии от дцБ силы звука. Условно считают, что для частоты 1000 Гц, шкалы громкости и силы звука полностью совпадают, т.е. k = 1.
Использование звуковых методов в диагностике
1. Аудиометрия - метод измерения остроты слуха по восприятию стандартизированных по частоте и интенсивности звуков.
2. Аускультация- выслушивание звуков, возникающих при работе различных органов, (сердца, легких, кровеносных сосудов и др.)
3. Перкуссия - выслушивание звучания отдельных частей тела при их простукивании.
Законы отражения
Среда, во всех точках которой скорость распространения света одинакова, называется оптически однородной средой. Границей двух сред называется поверхность, разделяющая две оптически неоднородные среды. Угол α между лучом падающим и перпендикуляром, восстановленным к границе двух сред в точке падения, называется углом падения. Угол β между лучом отраженным и перпендикуляром, вое-становленным к границе раздела двух сред в точке падения, называется углом отражения.
I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и луч отраженный лежат в одной плоскости.
II закон: Угол падения равен углу отражения: α = β
I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и преломленный луч лежат в одной плоскости.
I I закон: Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется показателем преломления второй среды относительно первой:
sinα/sinγ = const = n21
Линзы
Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями, и по показателю преломления отличающееся от окружающей среды.
Принято считать, что в таких линзах преломление лучей происходит в одной плоскости (ПП), которая называется преломляющей.
Прямая, проходящая через центры сферических поверхностей, ограничивающих линзу, (SS') называется главной оптической осью.
Точка пересечения главной оптической оси с преломляющей плоскостью называется оптическим центром линзы (О). Любая прямая, проходящая через оптический центр линзы, называется оптической осью (АА). Лучи, параллельные главной оптической оси, после преломления в линзе собираются в одной точке, называемой главным фокусом линзы (F). Точка пересечения оптической оси с фокальной плоскостью называется побочным фокусом (F').
Такие линзы называются собирающими. Параллельный пучок лучей после преломления в линзе может рассеиваться, тогда в одной точке, называемой мнимымфокусом, соберутся продолжения этих лучей. Такие линзы называются рассеивающими.
Плоскость, перпендикулярная главной оптической оси и проходящая через главный фокус линзы, называется фокальной плоскостью.
В собирающих линзах изображение зависит от положения предмета. Если предмет находится между оптическим центром линзы и главным фокусом, то изображение будет мнимым, прямым и увеличенным.
Если предмет находится между фокусом и двойным фокусом, изображение - действительное, обратное, увеличенное.
Если предмет находится между двойным и тройным фокусом и далее, изображение - действительное, обратное, уменьшенное.
Рассеивающие линзы всегда дают мнимое, прямое и уменьшенное изображение.
Расстояние от оптического центра линзы до главного фокуса называется фокусным расстоянием F. Величина, обратная фокусному расстоянию, называется оптической силой линзы:D =1/F
Измеряется оптическая сила линзы в диоптриях (дптр). Одна диоптрия - это оптическая сила такой линзы, фокусное расстояние которой равно 1 м. У собирающих линз она положительна, у рассеивающих отрицательна. На практике, для определения фокусного расстояния и оптической силы линзы используют формулу тонкой линзы: D = 1/F = 1/d +1/f ,
где d - расстояние от предмета до линзы, f - расстояние от линзы до изображения.
Изображения, полученные с помощью одной линзы, как правило, отличаются от самого предмета. В этом случае говорят об искажении изображения. Сферическая аберрация возникает потому, что края линзы отклоняют лучи сильнее, чем центральная часть.
В результате, изображение светящейся точки на экране получается в виде расплывчатого пятна, а изображение протяженного предмета становится не резким, размытым. Для устранения сферической аберрации используют центрированные оптические системы, состоящие из собирающих и рассеивающих линз. Центрированной называется система линз, имеющих общую главную оптическую ось.
Хроматическая аберрация обусловлена дисперсией света, так как линзу можно представить в виде призмы. В этом случае фокусное расстояние для лучей различной длины волны оказывается неодинаковым.
Поэтому при освещении предмета сложным, например белым светом, точка на экране будет видна в виде окрашенного пятна, а изображение протяженного предмета будет также окрашенным и нерезким. Хроматическую аберрацию можно исключить, комбинируя собирающие и рассеивающие линзы, сделанные из стекол различных сортов, обладающих разными относительными дисперсиями. Такие системы линз называются ахроматами. Причиной астигматизма является неодинаковое преломление лучей в различных меридиональных плоскостях линзы. Различают два вида астигматизма. Первый, так называемый, астигматизм наклонных лучей, возникает в линзах, имеющих сферическую форму поверхности, но лучи падают на линзу под значительным углом к главной оптической оси. В этом случае лучи во взаимно перпендикулярных плоскостях преломляются неодинаково и точка на экране будет видна как линия, а у протяженного предмета искажается форма, например, квадрат будет виден как прямоугольник.
Второй вид астигматизма, правильный, возникает при отклонении поверхности линзы от сферической, когда по различным меридиональным плоскостям неодинаковый радиус кривизны, т.е. форма поверхности в этой плоскости не является сферической. Астигматизм наклонных лучей устраняется поворотом линзы к изображаемому предмету. Правильный астигматизм устраняется путем подбора радиусов кривизны и оптических сил преломляющих поверхностей. Это чаще всего цилиндрические линзы. Оптическую систему, исправленную кроме сферической и хроматической аберраций также и на астигматизм, называют анастигматом.
Оптическая система глаза
Глаз человека является своеобразным оптическим прибором, занимающим в оптике особое место. Это объясняется, во-первых, тем, что многие оптические инструменты рассчитаны на зрительное восприятие, во-вторых, глаз человеками животного), как усовершенствованная в процессе эволюции биологическая система, приносит некоторые идеи по конструированию и улучшению оптических систем. Глаз может быть представлен как центрированная оптическая система, образованная роговицей (Р), жидкостью передней камерой (К) и хрусталиком (X), ограниченная спереди воздушной средой, сзади - стекловидным телом. Главная оптическая ось (ОО) проходит через оптические центры роговицы и хрусталика. Кроме того, различают еще зрительную ось глаза (30), которая определяет направление наибольшей светочувствительности и проходит через центры хрусталика и желтого пятна (Ж). Угол между главной оптической и зрительной осями составляет около 5'. Основное преломление света происходит на внешней границе роговицы, оптическая сила которой равна приблизительно 40 дптр, хрусталика - около 20 дптр, а всего глаза - около 60 дптр. Приспособление глаза к четкому видению различно удаленных предметов называют аккомодацией. У взрослого здорового человека при приближении предмета к глазу до расстояния 25 см аккомодация совершается без напряжения и благодаря привычке рассматривать предметы, находящиеся в руках, глаз чаще всего аккомодирует именно на это расстояние, называемое расстоянием наилучшего зрения. Для характеристики разрешающей способности глаза используют наименьший угол зрения, при котором человеческий глаз еще различает две точки предмета. В медицине разрешающую способность глаза оценивают остротой зрения. За норму остроты зрения принимается единица, в этом случае наименьший угол зрения равен 1'.
КОЛЕБАНИЯ, ВОЛНЫ, ЗВУК
Любые отклонения физического тела или параметра его состояния, то в одну, то в другую сторону от положения равновесия называется колебательным движением или просто колебанием.
Колебательное движение называется периодическим, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими называются колебания, совершающиеся по законуsin или cos.
s = Asin (ωt +φ0), s = Acos (ωt +φ0)
Они совершаются под действием квазиупругих сил, т.е. сил, пропорциональных смещению
F = -kx
Основными характеристиками колебаний являются:
1. Смещение (s) — это расстояние, на которое отклоняется колеблющаяся система в данный момент времени, от положения равновесия.
2. Амплитуда (А) — максимальное смещение.
3. Период (Т) — время одного полного колебания.
4. Линейная частота (v) — это число колебаний в единицу времени, измеряется в Гц - это одно колебание в сек. v = 1/Т.
5. Циклическая или круговая частота (ω). Она связана с линейной частотой следующей зависимостью: ω= 2πv.
6. Фаза колебания (φ) характеризует состояние колеблющейся системы в любой момент времени: φ = ωt + φ0, φ0- начальная фаза колебания.
Колебательный процесс можно представить графически в виде развернутой или векторной диаграммы.
Развернутая диаграмма представляет собой график синусоиды или косинусоиды, по которому можно определить смещение колеблющейся системы в любой момент времени.
Однако, любое сложное колебание можно представить в виде суммы гармонических. Это положение определяет специальный метод диагностики -спектральный анализ.
Совокупность гармонических составляющих, на которые разлагается сложное колебание, называется гармоническим спектром этого колебания.
Колебания распределяются на следующие основные виды:
1. Свободные - это идеальные колебания, которые не существуют в природе, но помогают понять сущность других видов колебаний и определить свойства реальной колебательной системы. Они совершаются с собственной частотой, которая зависит только от свойств самой колеблющейся системы. Собственную частоту и период будем обозначать v0 и То.
2. Затухающие - это колебания, амплитуда которых со временем уменьшается, а частота не меняется и близка к собственной. Энергия в систему подается один раз. Уменьшение амплитуды за единицу времени характеризуется коэффициентом затухания β= r / 2m, где r - коэффициент трения, m - масса колеблющейся системы. Уменьшение амплитуды за период характеризуется логарифмическим декрементом затухания δ = βТ. Логарифмический декремент затухания — это логарифм отношения двух соседних амплитуд: δ = lg (Аt / A t+T) .
3. Вынужденные - это колебания, которые совершаются под действием периодически изменяющейся внешней силы. Они совершаются с частотой вынуждающей силы. Явление резкого увеличения амплитуды колебаний при приближении частоты вынуждающей силы к собственной частоте системы называется резонансом. Это увеличение будет зависеть от амплитуды вынуждающей силы, массы системы и коэффициента затухания.
4. Автоколебаниями называются незатухающие колебания, существующие в какой-либо системе при отсутствии переменного внешнего воздействия, а сами системы — автоколебательными. Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы. Автоколебательная система состоит из трех основных элементов: 1) собственно колебательная система; 2) источник энергии; 3) механизм обратной связи. Ярким примером такой системы в биологии является сердце.
Определим энергию тела массой m, совершающего свободные гармонические колебания с амплитудой А и циклической частотой ω.
s = Asin ωt
Полная энергия складывается из потенциальной и кинетической энергии:
W=Wn+Wk
Wn=ks2/2=(kA2/2)sin2ωt, где k=mω
W=mυ2/2, учитывая, что υ=ds/dt=Aωcosωt
получим Wk=(mω2A2/2)*cos2ωt
Тогда полная энергия:
W=(mω2A2/2)(sin2ωt+cos2ωt)=(mω2A2)/2
Процесс распространения колебаний в пространстве называется волновым движением или просто волной.
Известны два вида волн: механические и электромагнитные. Механические волны распространяются только в упругих средах. Механические волны делятся на два вида: поперечные и продольные.
Если колебания частиц совершаются перпендикулярно направлению распространения волны, то она называется поперечной.
Если, колебания частиц совпадают с направлением распространения волны, то она называется продольной.
Рассмотрим, основные характеристики волнового движения. К ним относятся:
1. Все параметры колебательного процесса (s, A, v, ω, Т, φ).
2. Дополнительные параметры, характеризующие только волновое движение:
а) Фазовая скорость (υ) - это скорость, с которой колебания распространяются в пространстве.
б) Длина волны (λ) - это наименьшее расстояние между двумя частицами волнового пространства, колеблющихся в одинаковых фазах или расстояние, на которое распространяется волна за время одного периода. Характеристики связаны между собой: λ=υT, λ=υv
Колебательное движение любой частицы волнового пространства определяется уравнением волны. Пусть в точке О колебания совершаются по закону: S = A sinωt
Тогда в произвольной точке С закон колебаний: sc = sinω (t-∆t), где ∆t=x/υ=x/λv, xc=Asin(2πv t-(2πvx/λx))
s = Asin (ωt-2πх/λ) — это уравнение волны. Оно определяет закон колебания в любо й точке волнового пространства 2πх/λ = φ0 называется начальной фазой колебания в произвольной точке пространства.
3. Энергетические характеристики волны:
а. Энергия колебания одной частицы: W = (mω2A2)/2
б. Энергия колебания всех частиц, содержащихся в единице объема волнового пространства, называется объемной плотностью энергии: ε = W0/V
где Wo = εV есть полная энергия всех колеблющихся частиц в любом объеме.
Если n0 — концентрация частиц, то ε = n0W = n0mω2A2/2, но nom = p, тогда ε = (pω2A2)/2
Энергия колебания постоянно передается другим частицам по направлению распространения волны.
Величина, численно равная среднему значению энергии, переносимой волной в единицу времени через некоторую поверхность, перпендикулярную направлению распространения волны, называется потоком энергии через эту поверхность.
Ps=W0/t (Вт)
Поток энергии, приходящийся на единицу поверхности, называется плотностью потока энергии или интенсивностью волны.
J=Ps/s = W0/st (Вт)
Частным случаем механических волн являются звуковые волны:
Звуковыми волнами называются колебания частиц, распространяющихся в упругих средах в виде продольных волн с частотой от 16 до 20000 Гц.
Для звуковых волн справедливы те же характеристики, что и для любого волнового процесса, однако имеется и некоторая специфика.
1. Интенсивность звуковой волны называют силой звука.J=Ps/s (Вт/м2)
Для этой величины приняты специальные единицы измерения- Белы (Б) и децибелы (дцБ). Шкала силы звука, выраженная в Б или дцБ, называется логарифмической. Для перевода из системы СИ в логарифмическую шкалу используется следующая формула: J (с) =LgJ/J0 (Вт/м2)
где Jo = 10-12 Вт/м2 - некоторая пороговая интенсивность.
2. Для описания звуковых волн используется величина, которая называется звуковым давлением.
Звуковым или акустическим давлением называется добавочное давление (избыточное над средним давлением окружающей среды) в местах наибольшего сгущения частиц в звуковой волне.
В системе СИ оно измеряется в Па, а внесистемной единицей является 1 акустический бар = 10-1Па.
3. Важное значение имеет так же форма колебаний частиц в звуковой волне, которая определяется гармоническим спектром звуковых колебаний (∆v).
Все перечисленные физические характеристики звука называются объективными, т.е. не зависящими от нашего восприятия. Они определяются с помощью физических приборов. Наш слуховой аппарат способен дифференцировать (различать) звуки по высоте тона, тембру и громкости. Эти характеристики слухового ощущения называются субъективными. Изменение в восприятии звука на слух всегда связано с изменением физических параметров звуковой волны.
Высота тона определяется главным образом частотой колебаний в звуковой волне и незначительно зависит от силы звука. Чем больше частота, тем выше тон звука. В этом отношении диапазон звуков, воспринимаемых слуховым аппаратом, делится на октавы: 1- (16-32) Гц; 2 -(32-64)Гц; 3-(64-128) Гц; и т.д., всего 10 октав.
Если колебания частиц в звуковой волне гармонические, то такой тон звука называется простым или чистым. Такие звуки дают камертон и звуковой генератор.
Если колебания не гармонические, но периодические, то такой тон звука называется сложным. .
Если сложные звуковые колебания не периодически меняют свою интенсивность, частоту и фазу, то такой звук принято называть шумом.
Сложные тона одной и той же высоты, в которых форма колебаний различна, по разному воспринимаются человеком (например, одна и та же нота на различных музыкальных инструментах). Это различие в восприятии носит название тембра звука. Он определяется спектром частот гармонических колебаний, из которых состоит сложный звук.
Громкость восприятия звука зависит главным образом от силы звука, а так же от частоты. Эта зависимость определяется психофизическим законом Вебера-Фехнера:
При возрастании силы звука в геометрической прогрессии (J,J2, J3,...) ощущение громкости на одной и той же частоте увеличивается в арифметической прогрессии (Е, 2Е, ЗЕ,...).
E=kLg J/J0
где k - коэффициент, зависящий от частоты звука. Громкость измеряется также как и сила звука в Белах (Б) и децибелах (дцБ). ДцБ громкости называется фоном (Ф) в отличии от дцБ силы звука. Условно считают, что для частоты 1000 Гц, шкалы громкости и силы звука полностью совпадают, т.е. k = 1.
Использование звуковых методов в диагностике
1. Аудиометрия - метод измерения остроты слуха по восприятию стандартизированных по частоте и интенсивности звуков.
2. Аускультация- выслушивание звуков, возникающих при работе различных органов, (сердца, легких, кровеносных сосудов и др.)
3. Перкуссия - выслушивание звучания отдельных частей тела при их простукивании.
Ультразвук - это процесс распространения, колебаний в уп-пугой среде в виде продольных волн с частотой свыше 20 кГц.
Ультразвук получают с помощью специальных аппаратов, основанных на явлениях магнитострикции - при низких частотах и обратном пьезоэлектрическом эффекте - при высоких частотах.