Зависимость скорости реакции от концентрации субстрата
При увеличении концентрации субстрата скорость реакции сначала возрастает соответственно подключению к реакции новых молекул фермента, затем наблюдается эффект насыщения, когда все молекулы фермента взаимодействуют с молекулами субстрата. При дальнейшем увеличении концентрации субстрата между его молекулами возникает конкуренция за активный центр фермента и скорость реакции снижается.
Зависимость от концентрации фермента
При увеличении количества молекул фермента скорость реакции возрастает непрерывно и прямо пропорционально количеству фермента, т.к. большее количество молекул фермента производит большее число молекул продукта
Зависимость скорости реакции от температуры
Зависимость активности ферментов (скорости реакции) от t описывается колоколообразной кривой с максимумом скорости при значениях оптимальной t для данного фермента.
Закон о повышении скорости реакции в 2-4 раза при повышении t на 10°С справедлив и для ферментативных реакций, но только в пределах до 55-60°С, т.е. до t денатурации белков. Наряду с этим, как исключение, имеются ферменты некоторых м/о, существующих в воде горячих источников и гейзеров. При понижении t активность ферментов понижается, но не исчезает совсем. Иллюстрацией может служить зимняя спячка некоторых животных (суслики, ежи), t тела которых понижается до 3-5°С.
Зависимость скорости реакции от рН
Зависимость также описывается колоколообразной кривой с максимумом скорости при оптимальном для данного фермента значении рН. Для каждого фермента существует определенный узкий интервал рН среды, который является оптимальным для проявления его высшей активности. Например, оптимальные значения рН для пепсина 1,5-2,5, трипсина 8,0-8,5, амилазы слюны 7,2, аргиназы 9,7, кислой фосфатазы 4,5-5,0, сукцинатдегидрогеназы 9,0. 6. Используются неоднократно; 7. Работают в узком диапазоне t и pH; 8. Катализируют только те реакции, которые биохимически возможны; 9. Обладают каталитической эффективностью; 10. Характерна конформационная лабильность; 11. Способность к регуляции
В повседневной биохимической практике практически не оценивается количество фермента, а только его активность. Активность – более широкое понятие, чем количество. Она подразумевает в первую очередь результат реакции, а именно убыль субстрата или накопление продукта. Естественно, при этом нельзя игнорировать время, которое проработал фермент и число молекул фермента. Но так как число молекул фермента подсчитать обычно нереально, то используют количество биологического материала, содержащего фермент (объем или массу). Таким образом при определении активности ферментов нужно одновременно учитывать три меняющихся фактора: 1) масса полученного продукта или исчезнувшего субстрата, 2) время, потраченное на реакцию, 3)количество биологического материала, содержащего фермент.
Термолабильность ферментов
Скорость химических реакций зависит от температуры, поэтому катализируемые ферментами реакции также чувствительны к изменениям температуры. Установлено, что скорость большинства химических реакций повышается в два-четыре раза при повышении температуры на 10°С и, наоборот, снижается в два раза при понижении температуры на 10°С. Этот показатель получил название температурного коэффициента Q10. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции. Так, при температуре, не превышающей 45–50°С, скорость реакции увеличивается согласно теории химической кинетики. При температуре выше 50°С на скорость реакции большое влияние начинает оказывать тепловая денатурация белка-фермента, приводящая к полному прекращению ферментативного процесса.
a tопт
б
V
0 50 100 °C
а – повышение скорости реакции как функция температуры;
б – снижение скорости реакции как функция денатурации белка-фермента (стрелка указывает оптимум температуры)
Рисунок 2 – Зависимость скорости катализируемой ферментом реакции от температуры
Наибольшую активность ферменты проявляют в очень узком интервале температур где-то при 40-50°С для животных организмов и 40–60°С для растительных организмов, в этих условиях скорость реакции оказывается максимальной вследствие увеличения кинетической энергии реагирующих молекул. При низких температурах (0°С и ниже) ферменты, как правило, не разрушаются, хотя активность их падает почти до нуля. Каждый фермент имеет свой температурный оптимум.
Следует отметить, что на термолабильность ферментов оказывают влияние время воздействия, концентрация субстрата, pHсреды, а также в каком состоянии находится фермент. В кристаллическом виде ферменты более термоустойчивы.
Ферменты термолабильны, т. е. при нагревании теряют свою активность. Большинство ферментов не выдерживает температуру выше 50—60°. Коферменты термостабильны, они выдерживают температуру кипения воды. Добавляя прокипяченный кофермент к ферменту, который потерял свою активность-вследствие отделения кофермента, можно опять восстановить активность фермента.[c.521]
Так как большинство белков, выделенных пз термофилов, относится к ферментам, термостабильность обычно изучают, измеряя сохранность их каталитической активности. Как правило, раствор фермента нагревают при разных температурах в течение определенного времени (5—10 мин), а при более длительной инкубации из раствора отбирают аликвотные пробы, в которых определяют активность при температуре, обеспечиваюшей стабильность фермента. Данные такого рода ясно показали, что белки термофилов более стабильны, чем их аналоги из мезофилов, однако этот вывод основан на изучении необратимого изменения белков и по существу ничего ие говорит о причине их инактивации
6.Михаэлиса константа, один из важнейших параметров кинетики ферментативных реакций, введённый немецкими учёными Л. Михаэлисом (L. Michaelis) и М. Ментен в 1913; характеризует зависимость скорости ферментативного процесса от концентрации субстрата. Согласно теории Михаэлиса — Ментен, первым этапом любого ферментативного процесса является обратимая реакция между ферментом (Е) и субстратом (S), приводящая к образованию промежуточного фермент-субстратного комплекса (ES), который затем подвергается практически необратимому расщеплению на продукт реакции (Р) и исходный фермент:
Реакции образования и распада комплекса ES характеризуются константами скорости k(1), k(-1), k(2). Если концентрация субстрата значительно превышает концентрацию фермента ([S] >> [E]) и, следовательно, концентрация ES становится постоянной, скорость ферментативной реакции (u) выражается уравнением:
где V — максимальная скорость реакции, достигаемая при полном насыщении фермента субстратом. Соотношение констант скорости
также является константой (Кm), получившей название М. к. Подставляя в уравнение (2) М. к., получаем уравнение Михаэлиса — Ментен:
Из уравнения (3) следует, что М. к. численно равна концентрации субстрата, при которой скорость реакции составляет половину максимально возможной (см. рис.).
В ряде случаев, когда величина k(1) мала и ею можно пренебречь, М. к. становится равной
и может служить мерой сродства субстрата к ферменту. М. к. имеет размерность концентрации. Практически величину М. к. находят различными графическими методами, исследуя зависимость скорости ферментативной реакции от концентрации субстрата.
7.Зависимость скорости реакции от концентрации фермента и концентрации субстрата (кинетика ферментативных реакций) представлена соответственно на графиках.
График 1 График 2
В ферментативной реакции выделяют скорости трёх составляющих этапов:
- образование фермент-субстратного комплекса FS;
- обратный распад фермент – субстратного комплекса;
- распад фермент-субстратного комплекса с образованием продуктов реакции.
Скорость каждой из этих реакций подчиняется закону действующих масс:
V1 = К1 [F] ·[S]
V2 = K2 [FS]
V3 = K3 [FS]
В момент равновесия скорость реакции образования FS равна сумме скоростей его распада: V1=V2+V3. Из трёх этапов ферментативной реакции наиболее важным и медленным является третий, так как он связан с образованием продуктов реакции. По приведенной выше формуле найти скорость V3 невозможно, так как фермент- субстратный комплекс очень неустойчив и измерение его концентрации затруднено. В связи с этим, Л. Михаэлис, М.Ментен ввели константу Михаэлиса - Кm и преобразовали уравнение для измерения V3 в новое уравнение, в котором присутствуют реально измеримые величины. Ниже представлены два варианта данного уравнения
[F0] – исходная концентрация фермента;
Кm – константа Михаэлиса.
Физический смысл Кm: Кm = (К2+К3) /К1, т.е. она показывает соотношение констант скоростей распада фермент-субстратного комплекса и константы скорости его образования.
Уравнение Михаэлиса-Ментен является универсальным. Оно иллюстрирует зависимость скорости реакции от [F0] от [S].
1. Зависимость скорости реакции от концентрации субстрата. Эта зависимость выявляется при малых концентрациях субстрата [S]<Km. В этом случае концентрацией субстрата в уравнении можно пренебречь и уравнение приобретает вид: . В данном уравнении K3, [F0], Km – константы и могут быть заменены новой константой К*. Таким образом, при малой концентрации субстрата скорость реакции прямо пропорциональна этой концентрации V3 = K* · [S]. Эта зависимость соответствует первому участку графика 2.
2. Зависимость скорости от концентрации фермента проявляется при высокой концентрации субстрата. S > Km. В этом случае можно пренебречь Km и уравнение преобразуется в следующее: . Таким образом, при высокой концентрации субстрата скорость реакции определяется концентрацией фермента и достигает максимального значения V3 = K3[F0]=Vmax. (третий участок графика 2).
3. Уравнение позволяет определить численное значение Km при условии . В этом случае оно приобретает вид: , откуда следует, что Km=[S]
Таким образом, Кm численно равна концентрации субстрата при скорости реакции, равной половине максимальной. Кm является очень важной характеристикой фермента, она измеряется в молях (10-2 – 10-6 моль) и характеризуют специфичность фермента: чем ниже Km, тем выше специфичность фермента.
Графическое определение константы Михаэлиса возможно на графике зависимости скорости ферментативной реакции от концентрации фермента (слева).
Удобнее использовать график, представляющий прямую линию. Такой график предложен Лайнуивером – Берком (график двойных обратных величин), который соответствует обратному уравнению Михаэлиса – Ментен (справа)
.
8. Регуляция активности ферментов может осуществляться путём взаимодействия ферментов с различными биологическими компонентами или чужеродными соединениями, которые называются регуляторами ферментов. Они могут либо ускорять, либо замедлять ферментативную реакцию.
Активаторы– это вещества,увеличивающие скорость ферментативной реакции.
Виды активаторов:
1. Вещества, влияющие на область активного центра. К ним относятся ионы металлов (Na+, K+, Fe2+, Co2+, Cu2+, Ca2+, Zn2+, Mg2+, Mn2+ и др.). В ряде случаев ионы металлов выполняют функцию кофактора фермента. В других случаях они способствуют присоединению субстрата к активному центру фермента. Ионы металлов оказываются активаторами только в условиях дефицита их в организме.
2. Аллостерические эффекторы, которые связываются с аллостерическим (регуляторным) участком апофермента. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению структуры активного центра, что сказывается на связывании и превращении субстрата в активном центре. При этом активность фермента либо увеличивается (это аллостерические активаторы), либо уменьшается (это аллостерические ингибиторы). Аллостерическими эффекторами ферментов наиболее часто выступают различные метаболиты, а также гормоны, ионы металлов, нуклеозиды - АТФ, АДФ, АМФ.
3. Вещества, вызывающие модификации, не затрагивающие активный центр фермента. Возможно несколько вариантов таких модификаций:
- активация путём присоединения специфической модифицирующей группы к молекуле фермента. Пример: регуляция активности липазы.
неактивная АТФ АДФ активная О
липаза
липаза
протеинкиназа ║
─СН2ОН ─СН2─О─Р─ОН
фосфатаза │
Н3РО4 О─
В этом случае фосфатная группа присоединяется к гидроксильным группам аминокислот, находящихся в белковой части фермента. Отрицательно заряженные фосфатные группы могут разрывать слабые водородные и ионные связи в третичной структуре белка-фермента и влиять на конформационное состояние его активного центра. В зависимости от природы фермента фосфорилирование может его активировать или, наоборот, инактивировать. Реакции присоединения фосфатной группы катализируют ферменты протеинкиназы, а отщепления – фосфатазы. Активность этих ферментов в свою очередь находится под контролем гормональной системы.
- активация путёмперехода неактивного предшественника - профермента в активный фермент за счёт частичного протеолиза.
Некоторые ферменты синтезируются в клетке первоначально неактивными и после секреции из клетки переходят в активную форму. Неактивные предшественники называются проферменты (зимогены). Под действием активатора происходит частичный гидролиз профермента с отщеплением от него неактивного пептида, в результате чего открывается активный центр. Так происходит активация ферментов желудочно-кишечного тракта, переваривающих белки пищи. Например, фермент пепсиноген, синтезированный в клетках желудка, затем в просвете желудка под действием соляной кислоты превращается в активный пепсин путём удаления неактивного участка полипептидной цепи:
неактивный HCl активный
п епсиноген пепсин + пептид
(профермент)
- активатор вызывает диссоциацию субъединиц фермента, имеющего четвертичную структуру (отщепление одной из субъединиц фермента).
9. Ингибитораминазывают вещества, вызывающие снижение активности фермента. Следует различать инактивацию и ингибирование фермента. Сам по себе факт торможения ферментативной реакции в присутствии какого-либо вещества ещё не говорит о том, что это вещество – ингибитор. Любые денатурирующие агенты вызывают инактивацию фермента и торможение ферментативной реакции. Ингибиторы, в отличие от денатурирующих агентов, действуют в малых концентрациях и вызывают специфическое снижение ферментативной активности.
По прочности связывания с ферментом ингибиторы делятся на обратимые и необратимые. Необратимые ингибиторы прочно связываются с ферментом, тогда как комплекс фермент – обратимый ингибитор непрочен. Если сильно разбавить раствор фермента с обратимым ингибитором, то их комплекс распадается и активность фермента восстанавливается.
По механизму действия ингибиторы делятся на конкурентные и неконкурентные. Конкурентные ингибиторы имеют структурное сходство с молекулой субстрата, что позволяет им занять место субстрата в активном центре фермента:
E + S + I → EI + S
Встраиваясь вместо субстрата в активный центр, такой ингибитор не даёт ферментативной реакции осуществиться. То есть, субстрат конкурирует с ингибитором за активный центр. С активным центром связывается то соединение, молекул которого больше. Снять конкурентное ингибирование можно, увеличив концентрацию субстрата.
На принципе конкурентного ингибирования основано действие многих фармакологических препаратов (например, сульфаниламидных), инсектицидов, фосфорорганических боевых отравляющих веществ (зарин, зоман).
Неконкурентные ингибиторы не имеют структурного сходства с субстратами. Они или связываются с каталитическими группами активного центра фермента, или, связываясь с ферментом вне активного центра, изменяют конформацию активного центра таким образом, что это препятствует превращению субстрата. Поскольку неконкурентный ингибитор не влияет на связывание субстрата, то в отличие от конкурентного ингибирования наблюдается образование тройного комплекса:
E + S + I → ESI
К неконкурентным ингибиторам относятся ионы тяжёлых металлов: ртути, свинца, кадмия, мышьяка. Они блокируют SH-группы, входящие в каталитический участок фермента. Снять действие неконкурентного ингибитора избытком субстрата, как при конкурентном ингибировании, нельзя, а можно лишь веществами, связывающими ингибитор (реактиваторами). Тяжелые металлы лишь в небольших концентрациях играют роль ингибиторов, в больших концентрациях они действуют как денатурирующие агенты.
Наиболее важными неконкурентными ингибиторами являются образующиеся в живой клетке промежуточные продукты метаболизма, способные обратимо связываться с аллостерическими участками фермента – аллостерические ингибиторы. Они занимают ключевое положение в метаболизме, поскольку тонко реагируют на изменения в обмене веществ и регулируют прохождение веществ по целой системе ферментов. Например, аллостерическая регуляция проявляется в виде ингибирования конечным продуктом первого фермента цепи. Эта регуляция сходна с регуляцией по механизму обратной связи и позволяет контролировать выход конечного продукта, в случае накопления которого прекращается работа первого фермента цепи:
Е1 Е2 Е3
А → В → С → D
Е1, Е2, Е3 – ферменты; А, В, С,D- метаболиты
Механизм действия ферментов
Механизм действия простого и сложного ферментов одинаков, так как активные центры в их молекулах выполняют сходные функции.
В основе действия ферментов лежит их способность ускорять реакции за счет уменьшения энергии активации субстрата. Ферменты деформируют электоронные оболочки субстратов, облегчая таким образом взаимодействие между ними. Энергитя, необходимая для того, чтобы привести молекулы в активное состояние, называется энергией активации. Роль обычного катализатора (и еще в большей мере биологического) состоит в том, что он снижает энергию активации субстрата.
Основы механизма действия ферментов были изучены в начале XX в. В 1902 г. английский химик А.Браун высказал предположение о том, что фермент, воздействуя на субстрат, должен образовать с ним промежуточный фермент — субстратный комплекс. Одновременно и независимо от А. Брауна это же предположение высказал французский ученый В. Анри. В 1913 г. Л. Михэлис и М. Ментэн подтвердили и развили представления о механизме действия ферментов, который можно представить в виде схемы:
Е [E-S]'«+ S [E-S]'« [Е-Р]« ® Е + Р,
где Е — фермент, S — субстрат, Р — продукт.
На первой стадии ферментативного катализа происходит образование фермент-субстратного комплекса, где фермент и субстрат могут быть связаны ионной, ковалентной или иной связью. Образование комплекса E-S происходит практически мгновенно.
На второй стадии субстрат под воздействием связанного с ним фермента видоизменяется и становится более доступным для соответствующей химической реакции. Эта стадия определяет скорость всего процесса. На этих стадиях ферментативного катализа происходят неоднократные изменения третичной структуры белка фермента, приводящие к последовательному сближениюс субстратом и ориентации в пространстве тех активных групп, которые взаимодействуют друг с другом на различных этапах преобразования субстратов
На третьей стадии происходит химическая реакция, в результате которой образуется комплекс продукта реакции с ферментом.
Заключительным процессом является высвобождение продукта реакции из комплекса.
В организме превращение веществ до конечных продуктов происходит в несколько этапов, каждый из которых катализируется отдельным ферментом. Сумма энергии активации промежуточных реакций ниже энергии активации, необходимой для одновременного расщепления субстрата.
По механизму действия ацетилхолинэстераза сходна с химотрипсином.
Ацетилхолин взаимодействует со специфическим остатком серина в активном центре ацетилхолин-эстеразы с образованием в качестве промежуточного продукта ковалентно связанного ацетил—фермента, а холин высвобождается. Ацетил—фермент далее вступает во взаимодействие с молекулой воды, что приводит к образованию ацетата и регенерированного свободного фермента (рис. 37.12).[
Конкурентные вигибиторы, как правило, имеют структурное сходство с субстратами и поэтому пшроко используются при исследовании механизма действия различных ферментов. Классическим примером конкурентного торможения служит ингибирование сукцинатдегидрогеназы малонатом и другими дакарбоновыми кислотами. В этом отношении детально проанализировано. влияние различных ингибиторов на ацетилхолинэстеразу.
В зависимости от свойств фермента механизм действия гистидин-сериновой пары в активных центрах гидролаз может изменяться довольно сильно. Интересна в этом отношении ацетилхолинэстераза (КФ 3.1.1.7), в активном центре которой при катализе осуществляется обратимый перенос заряда с участием фенольной группы тирозина.
Ацетилхолин является медиатором при передаче нервного импульса. В ответ на выделение ацетилхолина окончанием нервного волокна следует реакция возбуждения нервной клетки. После передачи нервного импульса ацетилхолин разрушается ферментом, который гидролизует 1—2 мкг ацетилхолина за 0,1—0,2 мс. Существует два типа таких ферментов ацетилхолинэстеразы и холинэстеразы. Первые ранее назывались истинными холинэстеразами, вторые — псевдохолинэстеразами, или ложными холинэстеразами, но эти названия менее удачны, чем настоящие. Ацетилхолинэстераза встречается преимущественно в нервной ткани и эритроцитах большинства видов животных, холинэстераза преобладает в плазме крови животных. Эти ферменты относятся к простым белкам. Механизм действия ацетилхолинэстеразы подробно исследован. Ведущую роль в каталической активности ацетилхолинэстеразы, как и иных эстераз, играет гистидин—сериновая пара, а также радикалы дикарбоновых кислот и тирозина.