Молекулярные механизмы лучевого повреждения биосистем

Относительное количество молекул малого размера, повреждаемых в течение первичных стадий действия излучений, невелико. При дозе облучения 10 Гр (абсолютно летальная доза для млекопитающих) из числа молекул, находящихся в клетке, доля поврежденных составляет для угле-водов 0,015%, для нуклеотидов — 0,023%, для аминокислот — 0,36%. Такое незначительное число поломок молекул, из числа содержащихся в клетке, не может существенно сказаться на жизнедеятельности клетки. Если эти малые молекулы являются компонентами полимерных соединений, их относительная поражаемость оказывается еще меньшей. Однако, в расчете на одну макромолекулу, в полимерах с большой молекулярной массой число повреждений может быть достаточно большим. В растворах белков при облучении их в той же дозе возникает 1 повреждение на 100 молекул, а в молекулах ДНК — 220 на 1 молекулу. В каждой молекуле ДНК оказываются пораженными около 10 нуклеотидов.

Наиболее биологически значимыми в облученной клетке являются изменения ДНК. Это повреждения, лежащие в основе одиночных и двой-ных разрывов цепочек ДНК: химическая модификация пуриновых и пиримидиновых оснований, их отрыв от цепи ДНК, разрушение фосфоэфирных связей в макромолекуле, распад дезоксирибозы. Кроме того, наблюдаются повреждения ДНК-мембранного комплекса, разрушение связей ДНК-белок, повышающее уязвимость ДНК при атаке вторич-ньши радикалами и ферментами, сшивки ДНК—ДНК и ДНК—белок, нарушения вторичной, третичной и четвертичной структур этого биополимера.

В липидной фракции в присутствии кислорода вследствие активации свободнорадикальных процессов накапливаются продукты перекисного окисления, в первую очередь перекиси и гидроперекиси ненасыщенных жирных кислот. В ряде случаев окислительные процессы в липидах могут принять цепной характер. Липиды являются структурными компонента-ми внутриклеточных мембран, и их повреждение приводит к существен-ному нарушению метаболических процессов в клетке, вносит значимый вклад в патогенез лучевого поражения. Некоторые продукты перекисного окисления липидов (гидроперекиси, перекиси, эпоксиды, альдегиды, ке-тоны) обладают выраженными радиомиметическими свойствами: под их влиянием в клетках возникают повреждения, во многом сходные с теми, которые вызываются самим облучением. Такие продукты получили наи-менование первичных радиотоксинов. Липидные радиотоксины, в частно-сти, изменяют свойства внутриклеточных мембран, их проницаемость, способствуют высвобождению ферментов. Они нарушают регуляцию биохимических процессов, вызывают глубокие нарушения ультраструктуры клеток.

Активации процессов перекисного окисления липидов способствует снижение активности собственных антиокислительных систем клетки. Это обусловлено как радиационным разрушением естественных антиокислителей в клетке, которыми являются в первую очередь фосфолипиды, так и разрушением фосфолипидов в результате активации цепной окислительной реакции.

К первичным радиотоксинам относят также образующиеся в облученных клетках продукты окисления фенолов — хиноны и семихиноны.

Изменения обнаруживаются и в других молекулярных компонентах клетки. Наблюдаются повреждения азотистых оснований и разрывы цепей РНК, распад мукополисахаридов, в частности гиалуроновой кислоты, нарушения первичной (вследствие избирательного поражения отдельных аминокислот) и вторичной структур ферментов, изменения их функциональных свойств и химических характеристик и т. п.

Реакции клеток на облучение

Клетки представляют собой основные ячейки жизни, в которых форми-руются начальные эффекты лучевых воздействий, приводящие к пораже-ниям, проявляющимся позднее на более высоких уровнях биологической организации — тканевом, органном, системном, организменном. Поэто-МУ в радиобиологии особое внимание уделяют процессам, развивающим-ся после облучения именно в клетках.

Часть II, РАДИОБИОЛОГИЯ

I

В живой клетке постоянно осуществляется обмен веществ с внешней средой, между отдельными внутриклеточными структурами. Молекуляр-ные повреждения, возникшие в клетках на начальных стадиях действия ионизирующих излучений, изменяют ход обменных процессов, осущест-вляющихся при участии поврежденных структур. Поскольку локализация и характер первичных повреждений в той или иной молекулярной струк-туре клетки носят в значительной степени вероятностный характер, весь-ма разнообразны и связанные с ними изменения метаболизма.

Нарушение метаболических процессов в свою очередь приводит к увеличению выраженности молекулярных повреждений в клетке. Этот феномен получил наименование биологического усилвния первичного ра-диационного повреждения. Однако, наряду с этим, в клетке развиваются и репарационные процессы, следствием которых является полное или ча-стичное восстановление структур и функций.

' <=:•

Биологическое усиление ..'','( радиационного поражения >

Наиболее значимы для судьбы облученной клетки изменения нуклеино-вого обмена, белкового обмена, окислительного фосфорилирования.

Практически сразу после облучения в делящихся клетках замедляется синтез ДНК. Активируются эндо- и экзонуклеазы, вследствие чего повы-шается ферментативный гидролиз молекул ядерной ДНК; увеличение проницаемости внутриклеточных мембран способствует поступлению ферментов во внутриядерное пространство, повьдшает доступность ядер-ной ДНК для ферментативной атаки. Распад ДНК приводит к повыше-нию содержания в тканях полидезоксинуклеотидов. В крови и моче облу-ченных нарастает количество нуклеотидов и продуктов их разрушения — азотистых оснований, нуклеозидов, мочевой кислоты и др.

Синтез РНК снижается в меньшей степени, чем ДНК. Отчасти нару-шение синтеза РНК зависит от повреждения матричных структур ДНК.

Повреждение мембран лизосом и выход за их пределы протеаз спо-собствуют в ранние сроки после облучения активации процессов протео-лиза. Эта активация проявляется повышением уровня свободных амино-кислот и других аминосоединений в тканях и жидкостях организма, аминоацидурией, развитием отрицательного азотистого баланса. Повы-шается активность протеолитических ферментов в крови, тканях, моче. Нарушается активность ингибиторов протеаз. Активация протеолиза не всегда является выражением процессов, происходящих в сохранивших жизнеспособность клетках. Она может отражать завершение деструкции уже погибших клеток.

Биосинтез белка нарушается мало. Однако продолжающийся синтез белка в сочетании с глубоким снижением или даже прекращением синте-за ДНК может привести к серьезным нарушениям структуры и простран-ственной организации нуклеопротеидных комплексов. Распад комплекса

Глава 16. РАДИОБИОЛОГИЧЕСКИЕ ЭФФЕКТЫ

ДНК — гистон облегчает доступ мутагенов к освобожденным от связей с белком участкам ДНК.

Интенсивность потребления кислорода существенно не изменяется. Однако в первые часы после облучения иногда наблюдаются признаки тканевой гипоксии. В высокорадиочувствительных клетках уже после об-лучения в сравнительно невысоких дозах отмечается нарушение окисли-тельного фосфорилирования, проявляющееся снижением коэффициента

Р/0.

В клетках кроветворных тканей угнетение окислительного фосфори-лирования выявляется уже через 2—4 ч после облучения, параллельно с глубоким распадом ДНК. По мнению ряда исследователей, нарушение синтеза АТФ является пусковым звеном в послелучевой деградации ДНК. Нарушение синтеза макроэргов может сказаться и на развитии вос-становительных процессов, в частности на работе системы ферментов ре-парации ДНК. Таким образом, подавление окислительного фосфорили-рования играет заметную роль в радиационном поражении генетических структур клетки.

Тканевое дыхание и окислительное фосфорилирование в клетках пе-ренесшего облучение организма, как правило, довольно быстро восста-навливаются.

Наши рекомендации