Роль печени в обмене аминокислот и белков

Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:

· синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % α-глобулинов, 50 % β-глобулинов,

единственный орган, где синтезируются белки свертывающей системы крови – протромбин, фибриноген, проконвертин, проакцелерин;

· активно протекают реакции трансаминирования и дезаминирования аминокислот;

· биосинтез мочевины происходит исключительно в печени;

· образование мочевой кислоты происходит в основном в печени, так как здесь много фермента ксантиноксидазы, при участии которого продукты распада пуриновых оснований (гипоксантин и ксантин) превращаются в мочевую кислоту;

· синтез креатина и холина.

В печени происходит детоксикация различных веществ.

Обезвреживающая функция печени

Печень является главным органом, где происходит обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей или в качестве источников энергии. К ним относят лекарственные препараты, продукты хозяйственной деятельности человека, вещества бытовой химии и пищевой промышленности (консерванты, красители).

Обезвреживание нормальных метаболитов

1. Обезвреживание пигментов.

В клетках ретикулоэндотелиальной системы печени протекает катаболизм гема до билирубина, конъюгация билирубина с глюкуроновой кислотой в гепатоцитах и распад в гепатоцитах поступающего из кишечника уробилиногена до непигментных продуктов.

2. Обезвреживание аммиака.

Аммиак – высокотоксичное соединение, особо опасное для мозга. Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины в печени. Мочевина – малотоксичное соединение и легко выводится из организма с мочой.

3. Инактивация гормонов.

Печени принадлежит значительная роль в инактивации гормонов. Многие пептидные гормоны гидролизуются в печени при участии протеолитических ферментов. Например, фермент инсулиназа гидролизует пептидные цепи А и В инсулина. Катаболизм адреналина и норадреналина происходит в печени путем дезаминирования моноаминооксидазой, метилирования и конъюгации с серной и глюкуроновой кислотами. Продукты метаболизма выводятся с мочой.

Обезвреживание ксенобиотиков

Обезвреживание большинства ксенобиотиков происходит в 2 фазы:

I – фаза химической модификации;

II – фаза коньюгации.

Химическая модификация – это процесс ферментативной модификации исходной структуры ксенобиотика, в результате которой происходит:

· разрыв внутримолекулярных связей;

· присоединение к молекуле дополнительных функциональных групп (-СН3, -ОН, -NH2),

· удаление функциональных групп путем гидролиза.

Типы модификаций:

· окисление (микросомальное, пероксисомальное);

· восстановление;

· изомеризация;

· ацетилирование, метилирование, гидроксилирование;

· гидролиз и т.д.

Система обезвреживания включает множество разнообразных ферментов (оксидоредуктазы, изомеразы, лиазы, гидролазы), под действием которых практически любой ксенобиотик может быть модифицирован. Наиболее активны ферменты метаболизма ксенобиотиков в печени.

В результате химической модификации, как правило, ксенобиотики становятся более гидрофильными, повышается их растворимость, и они легче выделяются из организма с мочой. Кроме этого, дополнительные функциональные группы необходимы, чтобы вещество вступило в фазу конъюгации.

Коньюгация – процесс образования ковалентных связей между ксенобиотиком и эндогенным субстратом. Образование связей происходит, как правило, по ОН- или NH2-группе ксенобиотика. Образовавшийся коньюгат малотоксичен и легко выводится из организма с мочой.

Выделяют глюкуронидную, сульфатную, тиосульфатную, ацетильную коньюгации. В них принимают участие эндогенные соединения, образующиеся в организме с затратой энергии: УДФ-глюкуронат, ФАФС, тиосульфат, ацетил-КоА.

Катаболизм гемоглобина

Катаболизм гема.

Билирубин образуется при распаде гемоглобина (рис. 28.2). Этот процесс протекает в клетках печени, селезенки и костного мозга. Билирубин является основным желчным пигментом у человека. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека – примерно 250-350 мг. Дальнейший метаболизм билирубина происходит в печени.

Роль печени в обмене аминокислот и белков - student2.ru

Рис. 28.2. Распад гемоглобина

2. Метаболизм билирубина.

Билирубин, образованный в клетках РЭС селезёнки и костного мозга, называется свободным (неконьюгированным)или непрямым, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови (альбуминах) и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин определяют реакцией с диазореактивом Эрлиха. Свободный (непрямой) билирубин не проходит через почечный барьер и в мочу не попадает.

Каждая молекула альбумина связывает 2 (или 3) молекулы билирубина. При низком содержании альбумина в крови, а также при вытеснении билирубина из центров связывания на поверхности альбумина высокими концентрациями жирных кислот, лекарственных веществ (например, сульфаниламиды) увеличивается количество билирубина, не связанного с альбуминами. Он может проникать в клетки мозга и повреждать их.

Комплекс альбумин-билирубин с током крови попадает в печень, где происходит его превращение в прямой билирубин путем коньюгации с глюкуроновой кислотой. Реакцию катализирует фермент УДФ-глюкуронилтрансфераза(рис. 28.3). Образующийся билирубиндиглюкуронид получил название прямого(коньюгированного) билирубина или связанного. Он растворим в воде и дает прямую реакцию с диазореактивом Эрлиха.

Роль печени в обмене аминокислот и белков - student2.ru

Рис. 28.3. Образование билирубиндиглюкуронида

Прямой билирубин – это нормальный компонент желчи, попадающий в кровь в незначительном количестве. Он может проходить через почечный барьер, но в крови в норме его мало, поэтому в моче обычными лабораторными методами он не определяется.

Вместе с желчью прямой билирубин выводится в тонкий кишечник. В кишечнике билирубинглюкурониды гидролизуются специфическими бактериальными ферментами β-глюкуронидазами. Освободившийся билирубин под действием кишечной микрофлоры восстанавливается с образованием сначала мезобилирубина, а затем мезобилиногена(уробилиногена). Небольшая часть уробилиногенов, всасываясь в тонком кишечнике и верхнем отделе толстого, через систему воротной вены попадает в печень, где практически полностью разрушается до дипиррольных соединений. Уробилиноген при этом в общий кровоток не поступает и в моче не определяется.

Основная часть уробилиногена поступает в толстый кишечник, где под влиянием микрофлоры подвергается дальнейшему восстановлению с образованием стеркобилиногена. Образовавшийся стеркобилиноген почти полностью выделяется с калом. На воздухе он окисляется и превращается встеркобилин, являющийся одним из пигментов кала. Небольшая часть стеркобилиногена попадает путем всасывания через слизистую толстого кишечника в систему нижней полой вены (через геморроидальные вены), доставляется в почки и выводится с мочой (4 мг/сутки).

Распределение желчных пигментов в норме: кровь – общий билирубин – 8,5 – 20,5 мкмоль/л; непрямой билирубин – 1,7 – 17,1 мкмоль/л; прямой билирубин – 2,2 – 5,1 мкмоль/л; моча – стеркобилиноген – 4 мг/сутки; кал – стеркобилиноген.

Наши рекомендации