Особенности утомления при различных видах физических нагрузок

Одним из основных признаков утомления является снижение работоспособности, которая в процессе выполнения различных физических упражнений изменяется по разным причинам; поэтому и физиологические механизмы развития утомления неодинаковы. Они обусловлены мощностью работы, ее длительностью, характером упражнений, сложностью их выполнения и пр.

При выполнении циклической работы максимальной мощности основной причиной снижения работоспособности и развития утомления является уменьшение подвижности основных нервных процессов в ЦНС с преобладанием торможения вследствие большого потока эфферентной им пульсации от нервных центров к мышцам и афферентных импульсов от работающих мышц к центрам. Разрушается рабочая система взаимосвязанной активности корковых нейронов. Кроме того, в нейронах падает уровень содержания АТФ и креатин-фосфата, и в структурах мозга повышается содержание тормозного медиатора — гамма-аминомасляной кислоты. Существенное значение в развитии утомления при этом имеет изменение функционального состояния самих мышц, снижение их возбудимости, лабильности и скорости расслабления.

При циклической работе субмаксимальной мощности ведущими причинами утомления являются угнетение деятельности нервных центров и изменения внутренней среды организма. Причина этого — большой недостаток кислорода, вследствие которого развивается гипоксемия, снижается рН крови, в 20-25 раз увеличивается содержание молочной кислоты в крови. Кислородный долг достигает максимальных величин — 20-22 л. Недоокисленные продукты обмена веществ, всасываясь в кровь, ухудшают деятельность нервных клеток. Напряженная деятельность нервных центров осуществляется на фоне кислородной недостаточности, что и приводит к быстрому развитию утомления.

Циклическая работа большой мощности приводит к развитию утомления вследствие дискоординации моторных и вегетативных функций. На протяжении нескольких десятков минут должна поддерживаться весьма напряженная работа сердечно-сосудистой и дыхательной систем для обеспечения интенсивно работающего организма необходимым количеством кислорода. При этой работе кислородный запрос несколько превышает потребление кислорода и кислородный долг достигает 12-15 л. Суммарный расход энергии при такой работе очень велик, при этом расходуется до 200 г глюкозы, что приводит к некоторому ее снижению в крови.

Происходит также уменьшение в крови гормонов некоторых желез внутренней секреции.

Длительность выполнения циклической работы умеренной мощности приводит к развитию охранительного торможения в ЦНС, истощению энергоресурсов, напряжению функций кислородтранс-портной системы, желез внутренней системы и изменению обмена веществ. В организме снижаются запасы гликогена, что ведет к уменьшению содержания глюкозы в крови. Значительная потеря организмом воды и солей, изменение их количественного соотношения, нарушение терморегуляции также ведут к понижению работоспособности и возникновению утомления у спортсменов.

В механизме развития утомления при длительной физической работе могут играть определенную роль изменения белкового обмена и снижение функций желез внутренней секреции. При этом в крови снижается концентрация глюко— и минералкортикоидов, катехо-ламинов и гормонов щитовидной железы. Вследствие этих изменений, а также в результате длительного влияния монотонных афферентных раздражений в нервных центрах возникает торможение. Угнетение деятельности этих центров приводит к снижению эффективности регуляции движений и нарушению их координации. При длительном выполнении работы в разных климатических усовиях развитие утомления, кроме того, может быть ускорено нарушением терморегуляции.

При различных видах ациклических движений механизмы развития утомления также неодинаковы. В частности, при выполнении ситуационных упражнений, при разных формах работы переменной мощности большие нагрузки испытывают высшие отделы головного мозга и сенсорные системы, так как спортсменам необходимо постоянно анализировать изменяющуюся ситуацию, программировать свои действия и осуществлять переключение темпа и структуры движений, что и приводит к развитию утомления. В некоторых видах спорта существенная роль принадлежит недостаточности кислородного обеспечения и развитию кислородного долга. При выполнении гимнастических упражнений и в единоборствах, утомление развивается вследствие ухудшения пропускной способности мозга и снижения функционального состояния мышц. При статической работе основными причинами утомления являются непрерывное напряжение нервных центров и мышц, выключение деятельности менее устойчивых мышечных волокон и большой поток афферентных и эфферентных импульсов между мышцами и моторными центрами

Дыхательный центр и его отделы (дорсальная и вентральная группы респираторных нейронов, пневмотаксический центр). Регуляция дыхания при изменении газового состава крови (с хеморецепторов рефлексогенных зон), при раздражении механорецепторов легких и верхних дыхательных путей.

Регуляция дыхания. Дыхательный центр.

Бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные α и β-нейроны. Первые возбуждаются при вдохе. Одновременно к β-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с α-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Эти их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, в также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гас-пинг – длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста – апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали, что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов центральной нервной системы в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

Рефлекторная регуляция дыхания.

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантрые рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят α-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких. Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания.

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение – гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличивается. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются, и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

Наши рекомендации