Вопрос 89. Методы изучения слухового анализатора: пробы Риннэ, Вебера.

Проба Риннэ.

Приложить ножку вибрирующего камертона – 128 Гц ( от 64 до 512 Гц – возможно) к сосцевидному отростку (костная проводимость). Как только прекратится восприятие звука, поднести камертон к наружному уху ( воздушная проводимость). Если при этом слышен звук, то воздушная проводимость преобладает над костной (R+), это является нормой. Если же звук не слышен, то проба повторяется в обратном порядке: сначала камертон подносят к уху, а, после того, как звук исчезает, ножку камертона приставляют к сосцевидному отростку. Преобладание костной проводимости (R-) свидетельствует о поражении и звукопроводящего аппарата. При заболеваниях звуковоспринимающего аппарата, воздушная проводимость преобладает над костной, но длительность восприятия меньеше, чем в норме.

Проба Вебера.

Ножку звучащего камертона приставить к средней линии лба или темени так, чтобы бранши колебались во фронтальной плоскости. Испытуемый должен слышать звук одинаковой громкости левым и правым ухом (w). При одностороннем заболевании звукопроводящего аппарата звук латерализуется (слышен громче) в большом ухе (w → или ← w). Это поражение можно имитировать, прижав козелок уха к ушной раковине (опыт Бинга). Тогда выключение воздушной проводимости удлиняет звукопроведение через кость. Следует отметить, что при отосклерозе звукопроведение одинаково при открытом и закрытом наружном проходе.


Билет 6

4.Фазовые изменения возбудимости в процессе развития возбуждения и их соотношение с фазами потенциала действия.

При развитии потенциала действия происходят фазные изменения возбудимости ткани. Состоянию исходной поляризации мембраны (мембранный потенциал покоя) соответствует нормальный уровень возбудимости. В период предспайка возбудимость ткани повышена. Эта фаза возбудимости получила название повышенной возбудимости (первичной экзальтации). В это время мембранный потенциал приближается к критическому уровню деполяризации, поэтому дополнительный стимул, даже если он меньше порогового, может довести мембрану до критического уровня деполяризации. В период развития спайка (пикового потенциала) идет лавинообразное поступление ионов натрия внутрь клетки, в результате чего происходит перезарядка мембраны и она утрачивает способность отвечать возбуждением на раздражители даже сверхпороговой силы. Эта фаза возбудимости получила название абсолютной рефрактерности (абсолютной не возбудимости). Она длится до конца перезарядки мембраны и возникает в связи с тем, что натриевые каналы инактивируются.

После окончания фазы перезарядки мембраны возбудимость ее постепенно восстанавливается до исходного уровня - фаза относительной рефрактерности. Она продолжается до восстановления заряда мембраны, достигая величины критического уровня деполяризации. Так как в этот период мембранный потенциал по-

коя еще не восстановлен, то возбудимость ткани понижена и новое возбуждение может возникнуть только при действии сверхпорогового раздражителя. Снижение возбудимости в фазу относительнойрефрактерности связано с частичной инактивацией натриевых каналов и активацией калиевых. Периоду отрицательного следового потенциала соответствует повышенный уровень возбудимости (фаза вторичной экзальтации). Так как мембранный потенциал в эту фазу ближе к критическому уровню деполяризации по сравнению с состоянием покоя (исходной поляризацией), то порог раздражения снижен и новое возбуждение может возникнуть при действии раздражителей подпороговой силы.

В период развития положительного следового потенциала возбудимость ткани понижена - фаза субнормальной возбудимости (вторичной рефрактерности). В эту фазу мембранный потенциал увеличивается (состояние гиперполяризации мембраны) удаляясь от критического уровня деполяризации, порог раздражения повышается и новое возбуждение может возникнуть только при действии раздражителей сверхпороговой величины.

Рефрактерность мембраны является следствием того, что натриевый канал состоит из собственного канала (транспортной части) и воротного механизма который управляется электрическим полем мембраны. В канале предполагают наличие двух типов ворот- быстрых активационных и медленных инактивакционных. Ворота могут быть полностью открыты или закрыты( пример калий-натриевый насос). При уменьшении заряда мембраны (деполяризация) в начальный момент оба типа ворот открыты, т.е. канал способен проводить ионы. Через открытые каналы ионы движутся по концентрационному и электрохимическому градиенту. Затем инактивационные ворота закрываются, т.е. канал инактивируется. По мере восстановления мембранного потенциала инактивационные ворота медленно открываются, а активационные быстро закрываются и канал возращается в исходное состояние.

Следовая гиперполяризация мембраны может возникать вследствие 3-х причин:

1. Продолжающий выход ионов калия.

2. Открытие каналов для хлора и поступление хлора в клетку.

3. Усиленная работа калий-натриевого насоса.

34.Базофильные и эозинофильные гранулоциты, их функции. Регуляция гранулоцитопоэза.

Базофилы содержатся в количестве 0-1%. Они находятся в кровеносном русле 12 часов. Крупные гранулы базофилов содержат гепарин и гистамин. За счет выделяемого ими гепарина ускоряется липолиз жиров в крови. На мембране базофилов имеются Е-рецепторы, к которым присоединяются Е-глобулины. В свою очередь с этими глобулинами могут связываться аллергены. В результате из базофилов выделяется гистамин. Возникает аллергическая реакция – сенная лихорадка (насморк, зудящая сыпь на коже, ее покраснение, спазм бронхов). Кроме того, гистамин базофилов стимулирует фагоцитоз, оказывает противовоспалительное действие. В базофилах содержится фактор, активирующий тромбоциты, который стимулирует их агрегацию и высвобождение тромбоцитарных факторов свертывания крови. Выделяют гепарин и гистамин, они предупреждают образование тромбов в мелких венах легких и печени.

Эозинофилы содержатся в количестве 1-5%. Их содержание изменяется в течении суток. Утром их меньше, вечером больше. Эти колебания объясняются изменениями концентрации глюкокортикоидов надпочечников в крови. Эозинофилы обладают способностью к фагоцитозу, связыванию белков токсинов и антибактериальной активностью. Их гранулы содержат белок, нейтрализующий гепарин, а также медиаторы воспаления и ферменты, препятствующие агрегации тромбоцитов. Эозинофилы принимают участие в борьбе с паразитарными инвазиями. Они продвигаются к местам скопления в тканях тучных клеток и базофилов, которые образуются вокруг паразитов. Там они фиксируются на поверхности паразита. Затем проникают в его ткань и выделяют ферменты, вызывающие его гибель. Поэтому при паразитарных заболеваниях возникает эозинофилия – повышение содержания эозинофилов. При аллергических состояниях и аутоиммунных заболеваниях, эозинофилы накапливаются в тканях, где происходит аллергическая реакция, например, в прибронхиональной ткани легких при бронхиальной астме. Здесь они нейтрализуют вещества, образующиеся в ходе этих реакций. Это гистамин, субстанция анафилаксии, фактор агрегации тромбоцитов. В результате выраженность аллергической реакции снижается. Поэтому возрастает содержание эозинофилов и при этих состояниях.

Регуляция гранулоцитопоэза осуществляется гуморальным путем, в котором можно выделить два механизма: механизм обратной отрицательной связи — в нем принимают участие ингибиторы гранулоцитопоэза; механизм положительной обратной связи, осуществляемый с помощью стимуляторов гранулоцитопоэза. Одним из активаторов считается колониестимулирующий фактор (КСФ). КСФ продуцируется клетками многих органов, в том числе костного мозга. Он представляет собой гликопротеид. Показано, что КСФ необходим для поддержания пролиферации и созревания КОЕ-К и ее потомков в колониях на полутвердых средах. Особую роль в регуляции гранулоцитопоэза отводят кейлонам. Кейлоны являются эндогенными тканеспецифическими ингибиторами пролиферации, не обладающими токсичностью. Они продуцируются в тех же тканях, на которые оказывают воздействие, и регулируют клеточную пролиферацию по принципу отрицательной обратной связи (+ лактоферрин — ингибитор, угнетающий секрецию КСФг)

Спирометрия и спирография. Статические объемы и емкости легких, их нормальные показатели у человека. Минутный объем дыхания, максимальная произвольная вентиляция легких, форсированная жизненная емкость легких, их нормальные показатели.

1. Спирометрия

Функциональное состояние легких зависит от возраста, пола, физического развития и ряда других факторов. Наиболее распространенной характеристикой состояния легких является измерение легочных объёмов, которые свидетельствуют о развитии органов дыхания и функциональных резервах дыхательной системы. Объём вдыхаемого и выдыхаемого воздуха можно измерить с помощью спирометра. Наиболее распространен водяной спирометр. Используется также суховоздушный спирометр.

Спирометрия – это важнейший способ оценки функции внешнего дыхания. Данным методом определяется жизненная емкость легких, легочные объемы, а также объемная скорость воздушного потока. При проведении спирометрии человек вдыхает и выдыхает с максимальной силой. Наиболее важные данные дает анализ экспираторного маневра – выдоха. Легочные объемы и емкости называются статическими (основными) дыхательными показателями. Различают 4 первичных легочных объема и 4 емкости.

○ Жизненная емкость легких (ЖЕЛ) – это то максимальное количество воздуха, которое можно выдохнуть после максимального вдоха. При исследовании определяется фактическая ЖЕЛ, которая сравнивается с должной ЖЕЛ (ДЖЕЛ). У взрослого человека среднего роста ДЖЕЛ составляет 3-5 литров. У мужчин её величина примерно на 15% больше, чем у женщин. Школьники в возрасте 11-12 лет имеют ДЖЕЛ около 2 литров; дети до 4 лет – 1 литр; новорожденные – 150 мл. ЖЕЛ=ДО+РОвд+РОвыд. ДЖЕЛ можно рассчитать по формуле: ДЖЕЛ (л) = 2,5×рост (м).

○ Дыхательный объем (ДО), или глубина дыхания, - объем вдыхаемого и выдыхаемого в покое воздуха. У взрослых людей ДО=400-500 мл, у детей 11-12 лет – около 200 мл, у новорожденных – 20-30 мл.

○ Резервный объем выдоха (РОвыд) – максимальный объем, который можно с усилием выдохнуть после спокойного выдоха. РОвыд = 800-1500 мл.

○ Резервный объем вдоха (РОвд) – максимальный объем воздуха, который можно дополнительно вдохнуть после спокойного вдоха. Резервный объём вдоха можно определить двумя способами: вычислить или измерить спирометром. Для вычисления необходимо из величины ЖЕЛ вычесть сумму дыхательного и резервного объёмов выдоха. Для определения резервного объёма вдоха с помощью спирометра необходимо набрать в спирометр от 4 до 6 литров воздуха и после спокойного вдоха из атмосферы сделать максимальный вдох из спирометра. Разность между первоначальным объёмом воздуха в спирометре и объёмом, оставшимся в спирометре после глубокого вдоха, соответствует резервному объёму вдоха. РОвд =1500-2000 мл.

○ Остаточный объём (ОО ) - объем воздуха, остающийся в легких даже после максимального выдоха. Измеряется только непрямыми методами. Принцип одного из них заключается в том, что в легкие вводят инородный газ типа гелия (метод разведения) и по изменению его концентрации рассчитывают объём легких. Остаточный объём составляет 25-30% от величины ЖЕЛ. Принимают ОО=500-1000 мл.

○ Общая емкость легких (ОЕЛ ) – количество воздуха, находящееся в легких после максимального вдоха. ОЕЛ=ЖЕЛ+ОО. ОЕЛ = 4500-7000 мл.

○ Функциональная остаточная емкость легких (ФОЕЛ ) – количество воздуха, остающегося в легких после спокойного выдоха. ФОЕЛ=РОвд.

○ Емкость вдоха (ЕВД) – максимальный объем воздуха, который можно вдохнуть после спокойного выдоха. ЕВД=ДО+РОвд.

Кроме статических показателей, характеризующих степень физического развития дыхательного аппарата, существуют и дополнительные – динамические показатели, дающие информацию об эффективности вентиляции легких и функциональном состоянии дыхательных путей.

○ Форсированная жизненная емкость легких (ФЖЕЛ) – количество воздуха, которое можно выдохнуть при форсированном выдохе после максимального вдоха. В норме разница между ЖЕЛ и ФЖЕЛ, равна 100-300 мл. Увеличение этой разницы до 1500 мл и более указывает на сопротивление току воздуха вследствие сужения просвета мелких бронхов. ФЖЕЛ = 3000-7000 мл.

○ Анатомическое мертвое пространство (ДМП )– объем, в котором не происходит газообмена (носоглотка, трахея, крупные бронхи) – прямому определению не подлежит. ДМП = 150 мл.

○ Частота дыхания (ЧД ) – количество дыхательных циклов за одну минуту. ЧД = 16-18 д.ц./мин.

○ Минутный объем дыхания (МОД) – количество вентилируемого в легких воздуха за 1 минуту. МОД = ДО + ЧД. МОД = 8-12 л.

○ Альвеолярная вентиляция (АВ ) – объем, выдыхаемого воздуха, поступающего в альвеолы. АВ = 66 – 80% от МОД. АВ = 0,8л/мин.

○ Резерв дыхания (РД) – показатель, характеризующий возможности увеличения вентиляции. В норме РД составляет 85% максимальной вентиляции легких (МВЛ). МВЛ = 70-100 л/мин.

2. Спирография

Спирография – метод графической регистрации дыхательных объемов, с помощью которого можно определить все выше перечисленные показатели легочной вентиляции. В настоящее время используются электронные приборы и компьютерные программы, которые позволяют графически зафиксировать и обработать объемы, потоки и скорости дыхательных маневров в самых разных режимах.

Статические объемы

1. Дыхательный V - количество воздуха, который поступает в легкие во время спокойного вдоха и выходит во время выдоха. Норма: 350-500 мл.

2. Резервный V вдоха – кол-во воздуха, которое можно вдохнуть после спокойного вдоха. Норма: около 2500 мл.

3. Резервный V выдоха - кол-во воздуха, которое можно выдохнуть после спокойного выдоха. Норма: около 1300 мл.

4. Жизненная емкость легких (ЖЕЛ) – сумма первых трех показателей (около 4,5 л)

5. Остаточный V - кол-во воздуха, которое остается в легких после max выдоха. Норма: около 1200 мл.

6. Общая емкость легких – ЖЕЛ+остаточный V (норма около 5,5 – 6 л)

7. Функциональная остаточная емкость – резервный V выдоха+ остаточный V (норма ок. 2500 мл)

Динамические объемы

1. Минутный объем дыхания (МОД)

МОД = дыхательный объем * ЧДД в мин (около 10 тыс)

2. Max произвольная вентиляция легких. Для ее определения человека просят дышать часто и глубоко в теч.15 сек. Результат умножают на 4. Норма: ♂ 100-180 л/мин, ♀70-120 л/мин.

3. Форсированная жизненная емкость легких. Проба Тиффно. Для ее определения человека просят сделать max вдох и max выдох. В норме в течение первой сек.он должен выделить не менее 80% ЖЕЛ (люди с астмой не смогут этого сделать).

87. Спироме́трия, спирогра́фия — метод исследования функции внешнего дыхания, включающий в себя измерение

объёмных и скоростных показателей дыхания.

К статическим относятся следующие показатели.

1. Дыхательный объем (ДО)-количество воздуха, поступающего в легкие за один спокойный вдох (500 мл).

2. Резервный объем вдоха (РОВД) - максимальное количество воздуха, которое человек может вдохнуть после

нормального выдоха (2500 мл).

3. Резервный объем выдоха (РОвыд) - максимальное количество воздуха, которое человек может выдохнуть после

спокойного вдоха (1000 мл).

4 Жизненная емкость легких (ЖЕЛ) - наибольшее количество воздуха, которое человек может выдохнуть после

максимально глубокого вдоха. Этот суммарный показатель легко определить, зная предыдущие величины: ЖЕЛ = К

+ РОВД + РОвыд.

ЖЕЛ зависит от возраста, пола, роста, массы тела и физического развития человека. Занятия некоторыми видами

спорта, в частности плотиной, плаванием и т.п., повышают ЖЕЛ.

5. После максимально глубокого выдоха в легких остается воздух, который называется остаточным объемом (С;

1000 мл).

6. Общая емкость легких (ЗЕЛ) - количество воздуха, содержащегося в легких на высоте максимума вдохе: ЗЕЛ =

ЖЕЛ +30.

7. Объем дыхательных путей («мертвое пространство», МП) составляет в среднем 150 мл.

8. Функциональная остаточная емкость (ФЗЕ) - количество воздуха, который остается в легких в конце выдоха: ФЗЕ

= Р0выд +30.

МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ (легочная вентиляция) - количество

воздуха, проходящего через легкие в 1 мин. Равен произведению объема воздуха, поступающего в легкие за1 вдох, н

а частоту дыхания. У взрослого человека в покое 5-9 л.

МАКСИМАЛЬНАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ (МВЛ определяет максимальное количество воздуха, которое может быть

провентилировано в течение минуты, характеризует функциональную способность аппарата внешнего дыхания.

норма - 110-120 л/мин

Форсированная жизненная ёмкость лёгких — объем форсированного выдоха после максимально глубокого вдоха,

определяемый с целью диагностики нарушений трахеобронхиальной проходимости. В норме величина этого

показателя составляет 75-80%

Вопрос 89. Методы изучения слухового анализатора: пробы Риннэ, Вебера. - student2.ru

Билет 7

8. Режимы и типы сокращений скелетных мышц. Характеристика двигательных единиц. Физиологические особенности гладких мышц.

Сократимость — это специфическая деятельность мышечной ткани при ее возбуждении.

Сила мышцы определяется максимальным грузом, который мышца может поднять. Мышцы способны совершать работу. Работа мышц определяется произведением величины поднятого груза на высоту подъема. Максимальная работа производится при средних величинах нагрузок. Лабильность мышцы равна 200-300 Гц.

При непосредственном раздражении мышцы (прямое раздражение) или опосредованно через иннервирующий ее двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы: латентный период ~ время от начала действия раздражителя до начала ответной реакции; фазу сокращения (фаза укорочения) и фазу расслабления.

В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, называется тетаиическим сокращением, или тетанусом, различают два вида тетануса: зубчатый и гладкий.

Если каждый последующий стимул поступает к мышце, в тот период когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления-зубчатый. Амплитуда тетатонического сокращения превышает амплитуду одиночного мышечного сокращения.

Различают несколько видов мышечных сокращений: изотонический, изометрический и смешанный. При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, если отсутствует сопротивление изменению ее длины. К изотоническому типу сокращений относятся сокращения мышц языка. При изометрическом сокращении длина мышечных волокон остается постоянной, а их напряжение возрастает. Такое сокращение мышцы возникает при попытке поднять чрезмерно большой груз. В естественных условиях сокращения мышц никогда не бывают чисто изотоническими или изометрическими, они имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы.

Характеристика двигальных единиц. Двигательная единица представляет собой систему из мотонейрона и иннервируемых им мышечных волокон (. Двигательная единица работает как одно целое. Все мышечные волокна, входящие в состав данной двигательной единицы, сокращаются практически одновременно. Мотонейроны бывают большие и малые. Малые мотонейроны имеют тонкие аксоны и иннервируют небольшое количество (десятки) мышечных волокон, образуя малые двигательные единицы. Большие мотонейроны имеют толстые аксоны, которые иннервируют большое количество мышечных волокон (до нескольких тысяч), образуя большие двигательные единицы.
Малые двигательные единицы входят в состав главным образом мелких мышц (пальцев рук, лица и др.), однако они входят также и в состав крупных мышц. Малые двигательные единицы обеспечивают быстрые и тонкие движения (например, движения пальцев рук). Большие двигательные единицы входят в состав преимущественно крупных мышц туловища и конечностей. Эти мышцы осуществляют относительно менее тонкие и более медленные движения, чем, например, движения пальцев рук.
Малые мотонейроны (низкопороговые) возбуждаются легче и быстрее по сравнению с большими (высокопороговыми). Так, например, внутренняя прямая мышца глаза относится к быстрым, а камбаловидная к медленным мышцам. Длительность волны сокращения первой равна 7,5 мс, а второй 75 мс, т. е. в 10 раз больше.

Наши рекомендации