Изменение патогенности и вирулентности
Патогенность и вирулентность микробов не постоянна и может изменяться спонтанно или целенаправленно.
Механизмы снижения или утраты вирулентности:
- Мутации генов при воздействии мутагенов различной природы.
- Утрата плазмид с генами токсинов.
Способы понижения вирулентности:
- Длительное культивирование на голодных средах (например, получение вакцины БЦЖ).
- Культивирование в маловосприимчивом организме.
- Культивирование в восприимчивом организме (антирабическая вакцина).
- Генно-инженерные манипуляции.
Механизмы индукции или увеличения патогенности и вирулентности:
- Спонтанный или индуцированный мутагенез.
- Действие умеренных лизогенизирующих фагов (например, у коринебактерий дифтерии).
- Приобретение плазмид (энтеробактерии и др.).
- R-S-диссоциация.
Способы повышения вирулентности:
- Пассажи через восприимчивый организм.
- Генно-инженерные манипуляции.
Экзотоксины, эндотоксины
Токсическое действие микробов обусловлено синтезом ими экзо- и эндотоксинов. Экзотоксины продуцируются в основном грамположительными микробами (возбудителями дифтерии, столбняка, ботулизма, газовой гангрены и др.) Они выделяются микробами во внешнюю среду. По химической природе они обычно являются термолабильными белковыми веществами, обладающими ферментативными свойствами и избирательно поражающими отдельные органы и ткани. Высокотоксичны, 5 нг/кг ботулинического токсина – смертельны для человека. Экзотоксины изменяют обмен веществ, вызывают выраженные явления интоксикации, сопровождающиеся нарушением деятельности физиологических систем: нервной, эндокринной, дыхательной, сердечно-сосудистой. Они органотропны, например, экзотоксин возбудителя столбняка избирательно блокирует холинергические структуры двигательных центров спинного и продолговатого мозга, а холероген и некоторые энтеротоксины взаимодействуют с G-белками энтероцитов, что приводит к увеличению выхода жидкости в просвет кишечника и диарее.
По механизму действия токсины делятся на несколько типов.
Часть из экзотоксинов прямо повреждает мембраны клеток-мишеней (порообразующие токсины). Типичным примером такого токсина является a-токсин золотистого стафилококка (гемолизин). Он представляет собой грибовидной формы гептамер (7 мономеров-субъединиц) с молекулярной массой 33 кДа, состоящий из трех доменов. Его литическое действие на мембраны клеток-мишеней (моноцитов, лимфоцитов, эритроцитов, эндотелиоцитов) протекает в 3 стадии. На первой стадии мономеры токсина связываются с фосфатидилхолином или холестерином, которые входят в состав клеточных мембран. На второй стадии происходит полимеризация токсина. На заключительной стадии образовавшийся гептамер претерпевает конформационные изменения. Образуется «ножка гриба», которая проходит сквозь клеточную мембрану. В результате в мембране возникает пора, через которую проходят ионы, небольшие молекулы и вода, что приводит к разрушению ядра в ядросодержащих клетках и осмотическому лизису эритроцитов.
Другие экзотоксины нарушают синтез белков. Они блокируют факторы элонгации или связываются с РНК рибосом. В частности, дифтерийный экзотоксин, а также экзотоксин синегнойной палочки вызывают АДФ-рибозилирование фактора элонгации II. Энтеробактерии (шигеллы, кишечные палочки) вырабатывают веротоксины, связывающие рибосомальную РНК, что приводит к расстройству белкового синтеза.
Следующая группа токсинов вмешивается в работу медиаторов и мессенджеров, передающих внутриклеточные сигналы. Примером действия данных токсинов является холероген – экзотоксин холерного вибриона. Подобные токсины состоят из субъединиц двух типов. Субъединица А ответственна за токсичность. У холерогена она представляет собой фермент АДФ-рибозилазу. В результате ее действия происходит АДФ-рибозилирование G-белков энтероцитов с последующей активацией аденилатциклазы. В результате нарастает концентрация внутриклеточного цАМФ, что приводит к диарее. В свою очередь, субъединица В обеспечивает прикрепление токсина к клеточным рецепторам и транспорт его в клетку. Сходным образом через активацию гуанилатциклазы действуют термостабильные экзотоксины энтеротоксигенной кишечной палочки.
Еще одна группа токсинов выступает в роли ферментов агрессии и инвазии. Многие бактериальные экзотоксины, такие, как гиалуронидаза, коллагеназа, b-гемолизин золотистого стафилококка (сфингомиелиназа) и др., повреждают экстрацеллюлярные структуры или мембраны клеток путем ферментативного гидролиза, что обеспечивает быстрое проникновение и распространение возбудителя.
Часть токсинов-ферментов способна вмешиваться в метаболические процессы, протекающие в тканях. Наиболее сильные из известных биологических ядов, нейротоксины возбудителя ботулизма (ботулотоксин) и столбняка (тетаноспазмин), представляют по механизму действия Zn-зависимые металлопротеазы. Непосредственными мишенями-субстратами для их действия является группа белков, локализованных в пресинаптических мембранах и синаптических пузырьках нервных окончаний. Ботулотоксин связывается с пресинаптической мембраной мотонейронов периферической нервной системы и вызывает протеолиз белков синаптобревина, синтаксина, везикулоассоциированного протеина и др. Это приводит к блокаде высвобождения ацетилхолина из пресинаптической мембраны и нарушению нервно-мышечной передачи.
Тетаноспазмин повреждает два вида нейронов. Он первоначально связывается с рецепторами пресинаптической мембраны мотонейронов, но далее путем обратного везикулярного транспорта перемещается в спинной мозг, где проникает в тормозные и вставочные нейроны. Мишенями для этого токсина с протеазной активностью являются те же белки (синаптобревин, везикулоассоциированный протеин). Их протеолиз приводит к высвобождению нейромедиаторов (глицина и гамма-аминомасляной кислоты), что в свою очередь, приводит к клоническим и тоническим мышечным судорогам. Протеолитической активностью обладает также экзотоксин возбудителя сибирской язвы (летальный фактор). Он повреждает ферменты внутриклеточного метаболизма, обладающие киназной активностью.
Наконец, некоторые экзотоксины (энтеротоксины, эксфолиатины, токсин синдрома токсического шока золотистого стафилококка, пирогенные токсины гноеродного стрептококка и др.) являются суперантигенами и вызывают поликлональную активацию лимфоцитов с выделением цитокинов. Они обладают выраженным пирогенным действием. Механизм действия данных токсинов заключается в связывании их молекул с вариабельным участком Т-клеточного рецептора к антигену с последующей активацией Т-лимфоцитов. При обычном иммунном ответе антиген прочно связывается лишь с теми Т-лимфоцитами, рецептор которых высокоспецифичен к данному антигену. Вследствие этого в пролиферацию и дифференцировку вступает всего около 0,01-0,1% от общего числа Т-лимфоцитов. Суперантигены же связываются с целой популяцией Т-клеток, у которых имеется b2-субъединица в вариабельном участке Т-клеточного рецептора. В результате в пролиферацию вступает до 20-30% от общего числа Т-лимфоцитов, что приводит к массивному выделению провоспалительных цитокинов клетками иммунной системы (ИЛ-1, ИЛ-2, фактора некроза опухолей, g-интерферона). Клинически это проявляется токсическим шоком с лихорадкой, падением давления и диффузной эритематозной сыпью.
Описано около ста бактериальных токсинов, которые отличаются друг от друга по молекулярной массе, химической структуре, рецепторам к различным клеткам макроорганизма, биологической активности и др. Некоторые из них приведены в табл. 8.
Таблица 8.
Основные токсины и механизмы их действия
Микроорганизм | Токсин | Механизм действия | Мишень | Заболевание или синдром | |||||
Мембраноатакующие | |||||||||
Aeromonas hydrophila | Аэролизин | Образование пор | Гликофорин | Диарея | |||||
Clostridium perfringens | О-перфринголизин | «-« | Холестерин | Газовая гангрена | |||||
Escherichia coli | Гемолизин | «-« | Плазматическая мембрана | Инфекции мочевыводящих путей | |||||
Listeria monocytogenes | О-листериолизин | «-« | Холестерин | Пищевые системные инфекции, менингит | |||||
Staphylococcus aureus | альфа-токсин | «-« | Плазматическая мембрана | Абсцессы | |||||
Streptococcus pneumoniae | Пневмолизин | «-« | Холестерин | Пневмония | |||||
Sreptococcus pyogenes | О-стрептолизин | «-« | «-« | Тонзилло-фарингит. Скарлатина | |||||
Ингибиторы белкового синтеза | |||||||||
Corynebacterium difhtheriae | Дифтерийный токсин | АДФ-рибозил-трансфераза | Фактор элонгации 2 | Дифтерия | |||||
E. coli, Shigella dysenteriae | Токсин Шига | N-гликозидаза | 28S pРНК | Геморрагический колит,гемолитико-уремический синдром | |||||
Pseudomonas aeruginosa | Экзотоксин А | АДФ-рибозил-трансфераза | Фактор элонгации 2 | Пневмония | |||||
Активаторы вторичных мессенджеров | |||||||||
E. coli | Цитотоксический некротизирующий фактор | Деамидаза | G-белки-регуляторы цитоскелета | Инфекции мочевыводящих путей | |||||
E. coli | Термолабильный токсин | АДФ-рибозил-трансфераза | G-белки | Диарея | |||||
E. coli | Термостабильный токсин | Стимулирует гуанилат-циклазу | Рецептор гуанилатциклазы | Диарея | |||||
Bacillus anthracis | Отечный фактор | Аденилат-циклаза | АТФ | Сибирская язва | |||||
Bordetella pertussis | Дермонекротический токсин Коклюшный токсин | Деамидаза АДФ-рибозил-трансфераза | G-белки (регуляторы цитоскелета) G-белки | Ринит Коклюш | |||||
Clostridium botulinum | Токсин С2 Токсин С3 | АДФ-рибозил-трансфераза «-« | G-актин G-белки (регуляторы цитоскелета) | Ботулизм Ботулизм | |||||
Clostridium difficile | Токсин А Токсин В | Гликозил-трансфераза | G-белки (регуляторы цитоскелета) | Диарея/псев-домембранозный колит | |||||
Vibrio cholerae | Холерный токсин | АДФ-рибозил-трансфераза | G-белки | Холера | |||||
Суперантигены | |||||||||
S. aureus | Энтеротоксины | Суперантиген | Рецептор Т-клеток и HLA II класса | Пищевые интоксикации | |||||
S. aureus | Эксфолиатины | «-« | «-« | Синдром «ошпаренной кожи» | |||||
S. aureus | Токсин синдрома токсического шока | «-« | «-« | Синдром токсического шока | |||||
S. pyogenes | Пирогенные экзотоксины | «-« | «-« | Скарлатина/ синдром токсического шока | |||||
Протеазы | |||||||||
B. anthracis | Летальный фактор | Металло-протеаза | Митоген-активируемая киназа протеинкиназ (MAPKK) | Сибирская язва | |||||
C. botulinum | Нейротоксины A-G | Zn-металло-протеаза | Везикуло-ассоциированный мембранный белок, синаптобревин, синтаксин | Ботулизм | |||||
C. tetani | Столбнячный токсин | Zn-металло-протеаза | Везикуло-ассоциированный мембранный белок, синаптобревин | Столбняк | |||||
Эндотоксины тесно связаны с микробной клеткой и освобождаются только при ее гибели или при разрушении. Они содержатся преимущественно в грамотрицательных микробах. По химической природе относятся к липополисахаридам (ЛПС), обладают выраженными антигенными свойствами (О-антиген). Эндотоксины, в отличие от белковых экзотоксинов, более устойчивы к повышенной температуре. При попадании в организм они вызывают сходные патологические процессы, независимо от того, из каких грамотрицательных бактерий они происходят.
После освобождения из бактериальной клетки эндотоксин связывается с липополисахаридсвязывающим белком LBP (lipopolysaccharide-binding protein). Этот комплекс взаимодействует с рецептором СD14 на поверхности макрофага, что и вызывает выброс медиаторов (рис. 13).
Эндотоксины стимулируют образование макрофагами трех групп мощных медиаторов – белков, липидов и свободных кислородных радикалов. Действуя совместно, они могут приводить к различным эффектам. Фактор некроза опухоли также усиливает синтез медиаторов, а простагландин Е2 подавляет.
При выделении небольшого количества эндотоксина, производимые макрофагами биологически активные вещества способствуют уничтожению инфекции, инициируя локальный регулируемый иммунный ответ. Типичные эффекты, которые при этом наблюдаются (повышение температуры тела, мобилизация специфического и неспецифического иммунитета в ответ на микроорганизмы) обеспечивают в норме выздоровление. При тяжелой инфекции, вызванной грамотрицательными микроорганизмами, с освобождением огромного количества эндотоксина происходит системное избыточное выделение медиаторов и, например, за счет вазодилятации сосудов под действием окиси азота и резкого падения артериального давления наблюдается опасный для жизни бактериальный эндотоксический шок. Эндотоксины, в отличие от экзотоксинов, не вызывают сильного специфического иммунного ответа и синтеза нейтрализующих антител. Эндотоксический шок значительно усугубляется при одновременном воздействии на организм эндотоксина и экзотоксинов-суперантигенов.
Иммунодепрессивное действие экзо-, эндотоксинов, других факторов патогенности -- важный фактор преодоления защитных барьеров. Многие вещества микробов подавляют активность фагоцитов, метаболизм нейтрофилов, угнетают активность Т-хелперов и, наоборот, активируют супрессивные механизмы иммунного ответа. К факторам вирулентности относится также «антигенная мимикрия» – наличие у возбудителей общих антигенов с антигенами человека. Белки теплового шока hsp 60 и 70 кДа имеются у микобактерий туберкулеза, сальмонелл и в клетках человека, что приводит к уклонению бактерий от иммунологического ответа хозяина. С одной стороны, макроорганизм толерантен, не отвечает на антигены микроба, сходные по строению с его собственными, с другой стороны, в случае возникновения такого ответа развивается аутоиммунная реакция на свои макромолекулы.
Тяжелое течение инфекционного процесса или фатальный для хозяина исход может наблюдаться при снижении уровня неспецифической защиты и иммунологической реактивности хозяина, большой дозе и высокой вирулентности возбудителя, а также при неестественных путях его проникновения. Хронизация инфекционного процесса, как правило, определяется несостоятельностью иммунологического ответа к возбудителю.
РАЗДЕЛ II. ЧАСТНАЯ МИКРОБИОЛОГИЯ
A. ЧАСТНАЯ БАКТЕРИОЛОГИЯ
IX. ГРАМПОЛОЖИТЕЛЬНЫЕ КОККИ
9.1 Семейство Staphylococcaceae
Впервые стафилококки обнаружены Р. Кохом в 1878 г., выделены Л. Пастером из гноя в 1880 г. и изучены Ф. Розенбахом в 1884 г.
Среди грамположительных кокков имеется два семейства, включающие представителей, патогенных для человека: Staphylococcaceae, Streptococcaceae.
В эти семейства входят патогенные, условно-патогенные и сапрофитические кокки, объединенные общими морфологическими, генетическими и биологическими свойствами. Кроме того, их объединяет способность вызывать гнойно-воспалительные процессы.
Классификация
Семейство Staphylococcaceae включает роды Staphylococcus, Gemella.
Основными признаками дифференцировки их представителей является наличие или отсутствие цитохромов и каталазная активность.
Общие свойства этого семейства: по морфологии представляют собой кокки, делящиеся, имеют положительный каталазный тест.
Род Staphylococcus включает более 40 видов, из них 3 основных – S. aureus, S. еpidermidis, S. saprophyticus – наиболее часто обнаруживаются у человека.
S. aureus (золотистый стафилококк) является ведущим патогенным микроорганизмом, вызывая гнойно-воспалительные процессы в различных органах и тканях. S. еpidermidis, а также S. hominis и S. haemolyticus вызывают инфекции, ассоциированные с катетерами, шунтами, протезами, преимущественно у лиц со сниженным иммунитетом. S. saprophyticus может быть причиной инфекций мочевыводящих путей, чаще всего возникающих у женщин молодого возраста.
Остальные виды стафилококков (S. schleifeiri, S. warneri, S. lugdunensis, S. capitis и мн. др.) не играют существенной роли в патологии человека.
9.1.1. Род Staphylococcus
Морфология
Стафилококкиимеют шаровидную форму, располагаются в виде гроздей винограда. Грамположительны.
В мазке из патологического материала они находятся на разных стадиях деления: одиночные, парные, цепочки, но чаще в виде гроздей; неподвижны, спор не образуют. Некоторые имеют капсулу, изменяются под действием антибиотиков и превращаются из типичных S-форм в L-формы, G-формы – карликовые, в фильтрующиеся формы.
Культуральные свойства
Температурный диапазон роста от 4°С до 43°С, pH 7,2-7,4; Г+Ц – 30-39 моль%. Неприхотливы к питательным средам. Колонии S.aureus круглые, гладкие, имеют пигмент золотистого цвета; S. epidermidis образует более мелкие белые колонии; S. saprophyticus – крупные, эмалевые, белого, реже лимонно-желтого цвета. Признак пигментообразования лучше проявляется на МЖСА (молочно-желточно-солевом агаре) или ЖСА – элективных и дифференциально-диагностических средах. Повышенная концентрация NaCl подавляет рост других микробов; в среде с яичным желтком выявляется фермент лецитиназа – вокруг колоний появляются радужные венчики помутнения. Добавление молока стимулирует образование пигмента. На кровяном агаре выявляют гемолитическую активность, характерную для золотистого стафилококка.
Стафилококки хорошо растут на средах с добавлением 40% желчи. В МПБ дают диффузное помутнение всей питательной среды.
Биохимические свойства
Факультативные анаэробы, хемоорганотрофы с окислительным и бродильным типом метаболизма, каталазоположительны, содержат цитохромы.
При посеве в столбик желатина разжижают его в виде воронки, свертывают молоко, белок расщепляют до H2S, восстанавливают нитраты в нитриты, индола не образуют. Биохимически активны, расщепляют многие углеводы до кислоты. Стафилококки способны сбраживать глюкозу в анаэробных условиях, что отличает их от микрококков. Продукция фермента плазмокоагулазы и термостабильной ДНКазы характерна только для вида S. aureus. Отсюда другие виды стафилококков часто обозначаются как «коагулазоотрицательные стафилококки (КОС)».
Многие стафилококки синтезируют бактериоцины.
Антигенная структура
Антигенными свойствами обладают вещества клеточной стенки: пептидогликан, тейхоевые кислоты, белок А, типоспецифические агглютиногены, капсула.
Пептидогликан имеет часть общих антигенов с пептидогликанами стрептококков. Видоспецифическими антигенами являются тейхоевые кислоты: для S. aureus – рибитолтейхоевые, для S. epidermidis – глицеринтейхоевые, S. saprophyticus имеет оба типа кислот.
Факторы патогенности
Факторами патогенности стафилококка служат токсины, микрокапсула, компоненты клеточной стенки, ферменты агрессии.
Золотистый стафилококк способен продуцировать не менее 4 типов гемолизинов, обладающих различным механизмом действия.
Альфа-токсин (a-гемолизин) является одним из основных токсинов S. aureus. Он относится к порообразующим токсинам и проявляет цитолитические свойства в отношении различных типов клеток (эритроцитов, моноцитов, лимфоцитов, тромбоцитов и эндотелиоцитов). Протомеры токсина связываются с цитоплазматической мембраной, где взаимодействуют с фосфатидилхолином или холестерином. Далее они олигомеризуются с образованием трансмембранного канала (поры). При этом происходит вход ионов натрия и кальция в клетку наряду с быстрым выходом из нее ионов калия. Это приводит к набуханию и гибели клеток, имеющих ядро, а также к осмотическому лизису эритроцитов. Кроме того, повышение внутриклеточного кальция стимулирует процессы апоптоза пораженных клеток.
Бета-гемолизин представляет собой фермент сфингомиелиназу. Он разрушает эритроциты человека, проявляет свойства холодовых гемолизинов (активен при низких температурах).
Гамма-лизин проявляет умеренную цитотоксическую активность в отношении эритроцитов человека, а также нейтрофилов и макрофагов. Механизм его действия до конца не выяснен.
Дельта-гемолизин проявляет детергентные свойства, разрушая различные типы клеток.
Лейкоцидин схож по механизму действия с гемолизинами; оказывает цитотоксическое действие на полиморфноядерные нейтрофилы, ингибирует всасывание воды и активирует образование цАМФ, что приводит к стафилококковым диареям.
Большая группа токсинов золотистого стафилококка относится к суперантигенам.
Среди них важную роль играют эксфолиатины А и В. Они вызывают синдром «ошпаренной кожи»: образуются большие очаги эритемы на коже и пузыри. Эксфолиатины проявляют протеолитическую активность, разрушая межклеточные контакты (десмосомы). Эти токсины различаются по антигенным свойствам и отношению к температуре: А – термостабилен, контролируется хромосомным геном, В – термолабилен, зависит от плазмидного гена.
Токсин синдрома токсического шока (TSST) вызывает синдром токсического шока за счет резкой стимуляции выделения провоспалительных цитокинов, включая ФНО-a, ИЛ 1, ИЛ 12 и др. Синдром встречается у женщин, использующих сорбирующие тампоны в период менструации, в которых могут размножаться стафилококки. Клинически проявляется температурой тела выше 38,8оС, рвотой, диареей, скарлатиноподобной сыпью, снижением артериального давления.
S. aureus продуцирует не менее 8 термостабильных энтеротоксинов (A-I), которые также являются суперантигенами. Они ответственны за развитие пищевых интоксикаций. Тип А обладает рвотным действием, тип В – повреждает слизистую желудочно-кишечного тракта. Типы В и С могут приводить к развитию синдрома токсического шока.
Компоненты клеточной стенки также стимулируют развитие воспалительных реакций, усиливают синтез интерлейкина I макрофагами, активируют систему комплемента и являются мощными хемоаттрактантами для нейтрофилов.
Капсула защищает бактерии от комплемент-зависимого поглощения полиморфноядерными фагоцитами, способствует адгезии микроорганизмов и их распространению в тканях.
Белок А золотистого стафилококка связывается с Fc-фрагментом IgG и блокирует его.
Тейхоевые кислоты активируют систему комплемента по альтернативному пути, а также свертывающую и калликреин-кининовую системы, облегчают адгезию к эпителиальным клеткам, связывают фибронектин.
Золотистый стафилококк продуцирует большое количество ферментов агрессии.
Каталаза защищает кокки от действия О2-зависимых микробицидных механизмов фагоцитов.
Лецитиназа (лецитовителлаза) разрушает лецитин, входящий в состав клеточных мембран, вызывает лейкопению.
Плазмокоагулаза активирует протромбин в органах и тканях, что приводит к образованию фибрина и гиперкоагуляции; препятствует фагоцитозу.
С другой стороны, фермент стафилокиназа (или фибринолизин), растворяя молекулы фибрина, способствует генерализации патологического процесса.
Гиалуронидаза стимулирует инвазию стафилококков, разрушая гиалуроновую кислоту соединительной ткани.
Аналогичным образом фермент ДНКаза гидролизует высокополимерную ДНК погибших лейкоцитов в гное, что уменьшает вязкость тканевого содержимого и способствует распространению инфекции.
Значительное количество стафилококков проявляют выраженную антибиотикорезистентность.
Многочисленные b-лактамазы разрушают молекулы пенициллинов, цефалоспоринов. У стафилококков они обычно кодируются плазмидами и транспозонами.
Однако наибольшую угрозу для здравоохранения в настоящее время представляют метициллин-резистентные Staphylococcus aureus (англ. аббревиатура MRSA), штаммы которых отличаются устойчивостью ко всем b-лактамным антибиотикам. Распространенность MRSA среди госпитальных штаммов данных бактерий составляет 30% и более. Подобными свойствами могут обладать и коагулазоотрицательные стафилококки.
Такие возбудители имеют особый пенициллин-связывающий белок ПСБ2а, отличающийся низкой аффинностью к b-лактамным антибиотикам. Этот белок кодируется дополнительным хромосомным геном mecA.
Резистентность
Стафилококки хорошо переносят высушивание, пигмент хорошо защищает их от солнечных лучей. При комнатной температуре они остаются жизнеспособными на предметах ухода за больными в течение 50 дней, при температуре 70-80° погибают через 20-30 минут. 1% раствор хлорамина убивает их через 2-5 минут, дезинфицирующие средства – за 15 минут (3% раствор фенола). Высокая чувствительность к бриллиантовой зелени, нитрофуранам позволяет широко применять эти препараты для лечения поверхностных гнойно-воспалительных заболеваний.