Диагностика и методы генетического обследования

Выявление роли наследственного фактора в происхождении заболевания очень велико, ибо позволяет сделать выбор метода лечения. Кратко вопросов диагностики мы уже касались. Остановимся на основных существующих методах генетического обследования.

1. Генеалогический метод заключается в составлении родословной записи с последующим анализом проявления признака, характерного для конкретной наследственной болезни на протяжении возможно большего числа поколений родственников пациента.

При этом признаками наследственных болезней являются:

а) обнаружение болезни «по вертикали»;

б) большая частота заболевания среди родственников, чем среди неродственников;

в) менделевские соотношения между числом больных и здоровых братьев и сестер (3:1; 1:1; 1:0).

2. Близнецовый метод состоит в сопоставлении внутрипарной конкордантности (идентичности) одно- и двуяйцовых близнецов, живущих в разных и одинаковых условиях, по анализируемому патологическому признаку.

3. Цитогенетический метод состоит в микроскопическом исследовании структуры и числа хромосом клеток (лейкоцитов, эпителия и др.). Изменение структуры и числа хромосом (хромосомные аберрации) является признаком наследственной природы болезни.

4. Демографический метод заключается в составлении родословных среди большой группы населения, в пределах области или целой страны, с последующим статистическим анализом проявления патологического признака и наличия менделевских соотношений, в исследовании генетических изолятов.

5. Биохимический метод заключается в исследовании биохимических признаков, заведомо специфичных для определенных наследственных болезней (серповидно-клеточная анемия и др.).

В настоящее время обосновано четыре подхода в борьбе с наследственными болезнями:

1. Массовое «просеивание» новорожденных на наследственные дефекты обмена веществ (современные программы предусматривают выявление фенилкетонурии, гипотиреоза, муковисцидоза, галактоземии и др.).

2. Пренатальная диагностика (с использованием разных методов: УЗИ, фетоскопия, амниоцентез и др.) в 1- и 2-м триместрах беременности.

3. Медико-генетическое консультирование.

4. Контроль за мутагенной опасностью факторов окружающей среды.

Принципы лечения

1. Симптоматические: лекарственные, хирургическое удаление пораженных органов, коррекция пороков сердца и др., с помощью физических методов (при наследственных заболеваниях нервной системы — электротерапия, климатотерапия).

2. Патогенетические — коррекция обмена (назначение диеты; возмещение недостающего продукта; освобождение от продуктов обмена, являющихся субстратами патологической реакции).

3. Этиологические — это как перспектива при реализации достижений генной инженерии.

ГЛАВА 5

ПАТОФИЗИОЛОГИЯ ПЕРИФЕРИЧЕСКОГО КРОВООБРАЩЕНИЯ
И МИКРОЦИРКУЛЯЦИИ

Периферическим, или органным, называется кровообращение в пределах отдельных органов.

Микроциркуляция составляет его часть, которая непосредственно обеспечивает обмен веществ между кровью и окружающими тканями. Нарушение микроциркуляции делает невозможным адекватное снабжение тканей кислородом и питательными веществами, а также удаление из них продуктов метаболизма.

Напомню, что к микроциркуляторному руслу относятся артериолы, метартериолы, капилляры, венулы и артериоловенулярные анастомозы. Диаметр сосудов микроциркуляторного русла не превышает 100 мкм. Диаметр капилляров обычно равен 5–7 мкм.

Основными формами расстройств периферического кровообращения являются: артериальная гиперемия, ишемия, венозный застой крови, нарушение реологических свойств крови.

Артериальная гиперемия — это увеличение количества крови, протекающей через микроциркуляторное русло. Причина — дилатация приводящих артерий и артериол.

Под вазодилятацией подразумевают расширение периферических артерий (все последовательные ветвления органных артерий, включая мельчайшие), но не капилляров и вен. Ибо только артерии имеют строение и функцию, позволяющие менять свой просвет в широких пределах.

Различают: а) физиологическую и б) патологическую артериальную гиперемию.

Физиологическая подразделяется на: 1) рабочую гиперемию — при усилении функции органа или ткани (скелетной мускулатуры при ее сокращении, поджелудочной железы при пищеварении, головного мозга при психоэмоциональной нагрузке и т. д.); 2) реактивную гиперемию — увеличение кровотока после его кратковременного ограничения.

Патологическая артериальная гиперемия возникает под действием патологических (необычных) раздражителей. В зависимости от фактора, ее вызывающего, говорят о воспалительной, тепловой, аллергической гиперемии и т. д.

В патогенезе развития патологической артериальной гиперемии выделяют: 1) нейрогенный механизм и 2) гуморальный механизм.

Кратко о первом механизме. В большинстве органов вазодилататорные нервные влияния осуществляются при участии ацетилхолина, выделяемого нервными окончаниями. Нейрогенный механизм может быть реализован путем истинного рефлекса (при участии нейронов головного или спинного мозга) либо местного рефлекса, осуществляемого в пределах периферических нервных ганглиев или даже отдельных нейронов.

С участием нейрогенного механизма может возникать гиперемия нейротонического и нейропаралитического типа.

Первая возникает в связи с раздражением экстеро- и интрорецепторов, а также при раздражении сосудорасширяющих нервов и центров (раздражители — психические, механические, температурные, химические и т. д.). Пример: покраснение лица и шеи при патологических процессах во внутренних органах (сердце, печень, легкие).

При отсутствии парасимпатической иннервации развитие артериальной гиперемии может быть обусловлено симпатической (гистаминергической, серотонинергической, адренергической) системой, ее соответствующими рецепторами и медиаторами.

Гиперемию второго типа (нейропаралитического) наблюдают при перерезке симпатических (адренергических) волокон и нервов, обладающих сосудосуживающим действием. Кроме того, она имеет место и при химической блокаде передачи центральных импульсов в области симпатических узлов (ганглиоблокаторы) или на уровне симпатических нервных окончаний (симпатолитики или адреноблокаторы).

Гуморальный механизм реализовывается специфическими биологически активными веществами (БАВ), которые действуют на сосудистую стенку со стороны просвета сосуда (если циркулируют в крови) либо образуются местно в сосудистой стенке или в окружающей ткани. Например: брадикинин, серотонин, гистамин, простагландины, снижение РО2, рост РСО2и др.

Микроциркуляция при артериальной гиперемии. При расширении приводящих артерий и артериол вследствие увеличения артериовенозной разности давлений в микрососудах скорость кровотока в капиллярах возрастает, внутрикапиллярное давление повышается и количество функционирующих капилляров растет. Когда закрытые капилляры раскрываются, они превращаются сначала в плазматические (содержат лишь плазму), а затем в них начинает циркулировать цельная кровь — плазма и форменные элементы. Вследствие увеличения количества функционирующих капилляров растет площадь стенок капилляров для транскапиллярного обмена веществ.

Симптомы артериальной гиперемии: 1) цвет органа или ткани — ало-красный (так как гематокрит высокий и много оксигемоглобина, который не успевает диссоциировать); 2) температура органа или ткани повышается; 3) тургор (напряжение) тканей возрастает (микрососуды переполнены кровью, количество тканевой жидкости увеличивается).

Значение. 1) Положительное (компенсаторное) — при повышении функциональной нагрузки при постишемических состояниях. 2) Отрицательное (патогенное) — способствует отеку тканей, кровоизлияниям в ткань. Особенно опасно в ЦНС. Усиленный приток крови — головная боль, головокружение, шум в голове, могут быть мелкие кровоизлияния.

Ишемия— несоответствие между притоком к тканям и органам артериальной крови и потребностью в ней. При этом потребность в кровоснабжении всегда выше реального притока крови по артериям.

Вызывающее ишемию уменьшение сосудистого просвета может быть обусловлено:

1) патологической вазоконстрикцией (ангиоспазмом);

2) полной или частичной закупоркой просвета артерий (тромб, эмбол) — обтурационная ишемия;

3) склеротическими и воспалительными изменениями артериальных стенок;

4) сдавлением артерий извне (компрессионная ишемия).

Выделяют следующие механизмы развития спазма артерий:

1) Внеклеточный механизм. Причиной нерасслабляющегося сокращения артерий являются вазоконстрикторные вещества, длительно циркулирующие в крови или синтезирующиеся в артериальной стенке (катехоламины, серотонин, некоторые простагландины).

2) Мембранный механизм. Обусловлен нарушением процессов реполяризации плазматических мембран гладкомышечных клеток артерий.

3) Внутриклеточный механизм. Вызывается нарушением внутриклеточного переноса ионов кальция (удаление из цитоплазмы) или же изменениями сократительных белков — актина и миозина.

Эмболия— циркуляция в кровеносном или лимфатическом русле образования (эмбола), в норме в нем не встречающегося, и закрытие либо сужение им кровеносного или лимфатического сосуда. Эмболы могут иметь эндогенное происхождение: оторвавшиеся тромбы, капельки жира при переломе трубчатых костей или размозжении жировой клетчатки; и экзогенное происхождение — пузырьки воздуха, попавшие из окружающей атмосферы в крупные вены, пузырьки газа, образующиеся в крови при быстром понижении барометрического давления.

Эмболия может локализоваться: 1) в артериях малого круга кровообращения (заносятся из большого круга кровообращения); 2) в артериях большого круга кровообращения (заносятся из левого сердца или легочных вен); 3) в системе воротной вены печени (заносятся из многочисленных ветвей воротной вены брюшной полости).

Тромбоз— прижизненное отложение сгустка стабилизированного фибрина и форменных элементов крови на внутренней поверхности кровеносных сосудов с частичной или полной обтурацией их просвета.

В отличие от внутрисосудистого свертывания крови, связанного с появлением слабо фиксированных на стенках сосудов фибриновых сгустков, в ходе тромботического процесса формируются плотные депозиты крови, которые прочно «прирастают» к субэндотелиальным структурам и реже эмболируют.

Структура тромба зависит от особенностей кровотока. В артериальной системе тромбы состоят из тромбоцитов (белая головка) с небольшой примесью эритроцитов и лейкоцитов (красный хвост), оседающих в сетях стабилизированного фибрина. В венозной системе — из эритроцитов, лейкоцитов и небольшого количества тромбоцитов, придающих тромбу гомогенно красный цвет.

Частота тромбоза очень велика. Может иметь самостоятельный генез или встречаться при очень многих заболеваниях.

Ключевые механизмы тромбообразования в артериях: 1) повреждение сосудистого эндотелия; 2) локальный ангиоспазм; 3) адгезия тромбоцитов к участку обнаженного субэндотелия; 4) агрегация тромбоцитов; 5) активация свертывающей способности крови при снижении ее фибринолитических свойств.

Повреждение эндотелия может носить травматический или метаболический характер.

В первом случае происходит обнажение тромбогенных компонентов базальной мембраны (коллагена, эластина, микрофибрина) с последующей адгезией к ним тромбоцитов. Во втором случае — эндотелий морфологически цел, но теряет способности: а) синтезировать антитромботические, противосвертывающие и фибринолитические вещества (активатор плазминогена, простациклин и др.); б) инактивировать прокоагулянтные вещества (V, VIII, IX и X факторы, тромбин, тромбопластин); в) метаболизировать БАВ, влияющие на систему гемостаза (простагландины, тромбоксан, лейкотриены и т.д.). При травматическом повреждении сосуда тромбоз начинается с адгезии тромбоцитов к участку деэндотелизации. Включает три этапа: 1) активацию тромбоцитарной мембраны; 2) фиксацию активированных тромбоцитов к галактозиловым группам молекулы коллагена; 3) сокращение тромбоцитов с появлением псевдоподий.

Активация тромбоцитарной мембраны — сложный процесс, связанный с химической модификацией тромбоцитарных мембран и индукцией в них фермента гликозилтрансферазы, взаимодействующим со специфическим рецептором коллагена и, следовательно, обеспечивающим «посадку» тромбоцита на субэндотелий. В активации тромбоцитов большое значение имеет влияние цитокинового комплекса и системы комплемента в зоне тромбоза. Активированный тромбоцит представляет собой своеобразную «пулю», нацеленную на деэндотелизированный участок. Достигнув этого участка, он распластывается на коллагене и выпускает псевдоподии. Для «стыковки» обязателен фактор Виллебрандта и плазменный фибронектин.

Итак, адгезия тромбоцитов к субэндотелию — это первая стадия формирования артериального тромба. Вторая стадия — это агрегация тромбоцитов, состоит из двух последующих фаз:

а) дегрануляция и выброс из тромбоцитов содержимого плотных телец (АДФ, АТФ, адреналин, норадреналин, серотонин, гистамин, Са2+);

б) выброс содержимого альфа-гранул (лизосомальные ферменты). Это приводит к активации соседних интактных тромбоцитов, приклеиванию их друг к другу и к поверхности адгезированных клеток и, следовательно, к формированию крупных агрегатов, составляющих основу тромбоцитарного тромба. Одновременно возникает спазм сосуда, вызванный локальным выделением тромбоксана А2.

Заключительная (третья) стадия тромбогенеза связана с активацией контактных факторов плазменного гемостаза. Они адсорбируются на поверхности агрегированных тромбоцитов и запускают «внутренний каскад» свертывания крови. Все завершается выпадением нитей стабилизированного фибрина и консолидацией тромба.

Наряду с этим включается и «внешний каскад» свертывания крови, связанный с высвобождением тканевого тромбопластина.

Кроме этого, тромбоциты способны сами запускать «внутренний каскад» (без контакта XII фактора) путем взаимодействия находящегося на их поверхности V фактора с X фактором, а он быстро катализирует переход протромбина в тромбин.

Таким образом, тромбоциты связывают два основных звена процесса внутрисосудистого тромбообразования — агрегацию и выпадение сгустка фибрина.

Тромбообразование в венах (механизм отличается). Венозные тромбы возникают в результате активации плазменного звена гемостаза, в отличие от артериальных, развивающихся на почве сосудисто-тромбоцитарных конфликтов. Активации плазменного гемостаза в венах благоприятствует гемодинамическая ситуация, создающаяся вблизи венозных клапанов и в местах бифуркаций с замедленным турбулентным током крови. В этих «критических» областях возникают ситуации, способствующие адсорбции контактных факторов (XII, прекаллекреина и XI ф.) на отрицательно заряженных структурах обнаженного субэндотелия и запуску внутреннего каскада свертывания крови.

Общепринятой классификации тромбоза до настоящего времени нет. Академиком А.А. Кубатиевым предпринята попытка ее сформулировать. По его мнению, с учетом патогенеза можно выделить следующие формы тромбов:

1. Васкулогенная форма (при васкулитах, коагулогенной готовности — снижение на 30 % фибринолитических факторов).

2. Гемоцитогенная — связана с первичным повреждением клеток крови (накопление БАВ и стимуляция тромботических процессов).

3. Цитокиновая (влияние ФНО, ИЛ-1,6).

4. Апоптогенная (при активации апоптоза эндотелиальных клеток стимулируется тромбогенез).

5. Гепаринассоциированная.

6. Посттравматическая.

7. Ксеногенная (воздействие ксенобиотиков обусловливает гемолиз эритроцитов, а это активирует тромбогенез).

8. Наследственно обусловленная (например, при наследственной гомоцистеинемии).

Продолжим рассмотрение причин, приводящих к ишемии. Следующая причина —это склеротические изменения артериальных стенок. Они вызывают сужение сосудистого просвета (атеросклероз, артерииты), что увеличивает сопротивление кровотоку и, значит, уменьшает приток крови в микрососудистое русло.

И последняя причина — сдавление приводящей артерии или участка ткани (компрессионная ишемия). Имеет место при растущей опухоли, рубце, попадании инородного тела и т.д. В головном мозге может возникать при значительном повышении внутричерепного давления.

Симптомы ишемии: 1) цвет органа — бледный (сужение поверхностно расположенных сосудов, обеднение крови эритроцитами); 2) объем уменьшается (ослабление кровенаполнения и уменьшение количества тканевой жидкости); 3) температура поверхностно расположенных органов снижается (температура внутренних органов не изменяется, так как нет теплоотдачи).

Микроциркуляция при ишемии. Увеличение сопротивления в приводящих артериях вызывает понижение внутрисосудистого давления в микрососудах органа и создает условия для их сужения. В результате сужения артерий в области ишемии наступает такое перераспределение эритроцитов в ветвлениях сосудов, что в капилляры поступает кровь, бедная форменными элементами. Это обусловливает превращение большого количества функционирующих капилляров в плазматические, а понижение внутрикапиллярного давления способствует их последующему закрытию, значит, количество функционирующих капилляров в зоне ишемии резко уменьшается. Вследствие понижения давления внутри капилляра фильтрация жидкости из сосуда понижается, а резорбция из ткани повышается, таким образом, количество межтканевой жидкости значительно уменьшается и лимфоотток ослабляется.

Компенсация возникающих нарушений возможна. Она зависит от анатомических и физиологических особенностей кровоснабжения органа. В органах с хорошим развитием артериальных анастомозов закупорка артерий может не сопровождаться существенными нарушениями кровоснабжения на периферии. Если органы и ткани имеют мало (или вовсе не имеют) анастомозов, то возникает тяжелая ишемия и в ее результате — инфаркт (омертвление ткани).

Венозный застой крови — увеличение кровенаполнения органа или ткани при уменьшении протекающей по сосудам органа крови из-за нарушения оттока крови в венозную систему.

Возникает вследствие механических препятствий для оттока крови из микроциркуляторного русла в венозную систему. Причины: 1) тромбоз вен; 2) повышение давления в крупных венах (например, при правожелудочковой недостаточности сердца); 3) сдавление вен (происходит легко из-за тонкости их стенок). Если давление в венах перед препятствием повышается настолько, что превышает диастолическое давление в приводящих артериях, то ортоградный (нормальный) ток крови наблюдается только во время систол, а во время диастол, из-за извращений градиента давлений, наступает ретроградный (обратный) толчок крови. Такой кровоток называется маятникообразным.

Симптомы венозного застоя: 1) уменьшается температура поверхностно расположенных органов и тканей вследствие понижения интенсивности кровотока, во внутренних органах этого не происходит; 2) усиливается транссудация, как следствие — отек тканей; 3) кислород крови при застое максимально используется тканями и большая часть Hb оказывается восстановленной, следовательно, ткани приобретают синюшный оттенок (темно-вишневый) — цианоз.

Общая патология собственно микроциркуляции

Основные причины нарушений: 1) внутрисосудистые изменения; 2) изменения самих сосудов; 3) внесосудистые изменения.

Начнем с характеристики внутрисосудистых изменений, приводящих к нарушениям в микроциркуляторном русле.

Гемореология— наука о влиянии элементов крови и взаимодействия их со стенками капилляров на кровоток. Реологические свойства (текучесть) крови как неоднородной жидкости имеют важнейшее значение при ее движении по микрососудам, просвет которых сопоставим с величиной ее форменных элементов.

Нормальное течение крови по микрососудам возможно при условии: 1) форменные элементы могут легко деформироваться; 2) они не склеиваются между собой и не образуют агрегаты; 3) концентрация форменных элементов крови не является избыточной.

В противном случае реологические свойства крови резко ухудшаются. Все указанные свойства важны прежде всего у эритроцитов (их количество в 1000 раз превышает количество лейкоцитов), следовательно, их свойства в наибольшей степени влияют на реологические свойства крови.

Нарушение деформируемости эритроцитов. Эта способность эритроцитов связана со свойствами их наружной мембраны, а также с высокой текучестью их содержимого. В потоке крови происходят вращательные движения мембраны вокруг содержимого эритроцитов, которые также перемещаются. Деформируемость чрезвычайно изменчива. Она понижается с возрастом. Мембраны эритроцитов становятся более жесткими под влиянием различных патогенных факторов (гиперосмолярности, при потере АТФ, фосфолипидов и т.д.). Это имеет место при заболеваниях сердца, несахарном диабете, раке, стрессах и т.д., следовательно, текучесть крови в микрососудах резко понижается.

Нарушение структуры потока крови в микрососудах. Особое значение для реологических свойств крови имеют изменения структуры потока крови в микрососудах диаметром 15–80 мкм (артериолах). Так, при первичном замедлении кровотока продольная ориентация эритроцитов часто сменяется на поперечную, профиль скоростей различных слоев крови в сосудистом просвете затупляется, траектория движения эритроцитов становится хаотичной. Это приводит к таким изменениям реологических свойств крови, при которых сопротивление значительно увеличивается, вызывая еще большее замедление течения крови в капиллярах и нарушая микроциркуляцию.

Усиление внутрисосудистой агрегации эритроцитов. Способность эритроцитов к агрегации (слипанию) и образованию «монетных столбиков», которые затем склеиваются между собой, является их нормальным свойством. Однако агрегация может значительно усиливаться под влияниям разных факторов, изменяющих как поверхностные свойства эритроцитов, так и среду, окружающую их. При усилении агрегации кровь превращается из взвеси эритроцитов с высокой текучестью в сетчатую суспензию, полностью лишенную этой способности.

Таким образом, агрегация эритроцитов нарушает нормальную структуру кровотока в микрососудах и является наиболее важным фактором, изменяющим нормальные реологические свойства крови.

Крайняя степень агрегации эритроцитов в современной медицинской литературе обозначается термином сладж (густая тина, ил, болото). Явления сладжа нарушают микрореологические свойства крови до такой степени, что кровоток в капиллярах замедляется и останавливается полностью — возникает стаз, несмотря на то, что артериовенозная разность кровяного давления на протяжении этих микрососудов сохранена. Однако вначале при стазе крови ни гемолиза, ни свертывания крови не происходит. В течение некоторого времени стаз обратим: движение эритроцитов может возобновляться и проходимость капилляров опять восстанавливается.

Факторы, обусловливающие усиленную агрегацию эритроцитов:

1) Повреждение стенок капилляров, как следствие — повышение фильтрации жидкости, электролитов и альбуминов (низкомолекулярных белков) в окружающие ткани, значит, в плазме крови увеличивается концентрация высокомолекулярных белков — глобулинов и фибриногена. Абсорбция этих белков на мембранах эритроцитов уменьшает их поверхностный потенциал и способствует их агрегации.

2) Проникновение химических повреждающих агентов внутрь капилляров и непосредственное действие их на эритроциты, вызывающее изменение физико-химических свойств их мембран и способствующее их агрегации.

3) Скорость кровотока в капиллярах, обусловленная состоянием приводящих артерий. Вазоконстрикция приводит к замедлению кровотока в капиллярах, способствуя агрегации эритроцитов и развитию стаза. При дилатации приводящих артерий и ускорении кровотока в капиллярах агрегация эритроцитов и стаз развиваются труднее и устраняются значительно легче.

В заключение укажем еще на один фактор, влияющий на реологические свойства крови, — это концентрация эритроцитов. Доказана прямая зависимость между концентрацией эритроцитов в крови (гематокрит) и ее относительной вязкости (относительно воды).

Последствия стаза в микрососудах. Если в период стаза в капиллярной стенке и крови значительных изменений не произошло, кровоток может восстанавливаться после устранения причин стаза. При значительных нарушениях сосудистой стенки и эритроцитов стаз крови может оказаться необратимым, вызывая некроз окружающих тканей. Патогенное значение стаза зависит во многом от того, в каком органе он возник (особенно опасен в микрососудах головного мозга, сердца и почек).

Патогенетические принципы восстановления
реологических свойств крови

1) Введение низкомолекулярных декстранов (реополиглюкина), что приводит: а) к разведению крови и повышению Ронкза счет макромолекул этих углеводородов, влекущих переход жидкости из межклеточного вещества в сосуды; б) к повышению Z-потенциала на эритроцитах и тромбоцитах; в) к закрытию поврежденной стенки эндотелия сосудов.

2) Введение антикоагулянтов (гепарина) повышает Z-потенциал на мембранах эритроцитов, тромбоцитов и, естественно, предотвращает процесс свертывания крови.

3) Введение тромболитиков (фибринолизина).

4) Введение дезагрегантов (трентала, никотиновой кислоты и др.).

5) Устранение вазоспазма.

Мы рассмотрели одну группу внутрисосудистых причин, приводящих к нарушению реологических свойств крови и нарушению микроциркуляции. Другим важным фактором, приводящим к кризису микроциркуляции, является диссеминированное внутрисосудистое свертывание крови (ДВС).

Подробнее патогенез ДВС-синдрома будет рассмотрен в разделе частной патофизиологии. Сейчас отметим лишь следующее.

Синдром диссеминированного внутрисосудистого свертывания крови является клиническим вариантом венозного тромбоза. В основе ДВС-синдрома лежит избыточная активация либо «внешнего», либо «внутреннего» пути свертывания крови. Наиболее частой причиной синдрома является септицемия, сопровождающаяся деструкцией клеток крови, и прежде всего нейтрофилов, а также обширные некрозы тканей после травм и хирургических вмешательств. В таких случаях имеет место преимущественная активация «внешнего» каскада свертывания крови, заканчивающаяся генерализованным венозным тромбоэмболизмом. Описаны четыре стадии развития ДВС-синдрома: 1) гиперкоагулемия; 2) нарастающая коагулопатия потребления; 3) дефибриногенезация и тотальный фибринолиз (истощение запаса фибриногена); 4) восстановление.

Расстройства микроциркуляции,
связанные с патологическим изменением стенки сосудов

Виды и последствия патологических изменений стенки сосудов: 1) Повышение проницаемости, связанное с действием БАВ (гистамин, кинины, лейкотриен) при лихорадке, воспалении, аллергии и т.д., как следствие — такие изменения: усиление фильтрации — потеря плазмы — увеличение вязкости крови — повышение агрегации эритроцитов — стаз.

2) Крайней степенью высокой проницаемости стенок сосудов является их повреждение, в последующем — прилипание к дефекту тромбоцитов (адгезия) и тромбоз. При сильных повреждениях возникает диапедез форменных элементов крови (микрокровоизлияния).

Расстройства микроциркуляции, связанные
с периваскулярными изменениями

Здесь одним из ведущих патогенетических факторов является реакция тканевых базофилов окружающей сосуды соединительной ткани на повреждающие агенты.

При некоторых патологических процессах (воспаление, аллергия и т.д.) из тканевых базофилов при их дегрануляции в окружающее микрососуды интерстициальное пространство выбрасываются БАВ: гистамин, серотонин, гепарин и ферменты (в том числе лизосомальные). Влияние БАВ на микроциркуляцию связано с действием на тонус и проницаемость микрососудов, реологические свойства крови. А под влиянием лизосомальных ферментов происходит деструкция базальной мембраны микрососудов.

И, наконец, другой внесосудистый фактор, сказывающийся на состоянии микроциркуляции — затруднение лимфообращения. Лимфатические капилляры играют дренажную роль (отводят жидкость). При деформации или облитерации лимфатических капилляров наблюдается нарушение оттока жидкости и белка, в результате повышается тканевое давление, жидкость начинает переходить из крови в ткань, в результате развивается отек и затрудняется микроциркуляция.

Под недостаточностью лимфатической системы следует понимать состояние, при котором лимфатические сосуды не выполняют свою основную функцию — осуществление постоянного и эффективного дренажа интерстиция. Различают следующие формы недостаточности лимфообращения:

• механическая недостаточность, при которой течение лимфы затруднено в связи с наличием органических (сдавление, облитерация) или функциональных причин (повышение давления в магистральных венозных сосудах);

• динамическая недостаточность, при которой объем транссудации межтканевой жидкости превышает возможности лимфатической системы обеспечивать эффективный дренаж;

• резорбционная недостаточность, обусловленная морфофункциональными изменениями межуточной ткани, накоплением белков и осаждением их в интерстиции.

Недостаточность лимфообращения может быть общей и местной, острой и хронической. Основные клинико-анатомические проявления недостаточности лимфообращения в острой стадии — лимфедема, накопление белков и продуктов распада в межуточной ткани (слоновость, хилезный асцит, хилоторакс), а в хронической — развитие фиброза.

ГЛАВА 6
ПАТОЛОГИЯ ИММУНИТЕТА

Основные патогенетические механизмы развития иммунодефицитов, т.е. вопросы патологии иммунитета, весьма сложно рассматривать без анализа современных общих представлений о реактивности организма. Не имея, к сожалению, возможности привести такой анализ в рамках одной лекции, ограничимся лишь некоторыми определениями понятия реактивности.

Итак, реактивность(от латинского reactia — противодействие) — свойство организма как целого отвечать изменениями жизнедеятельности на воздействие окружающей среды, представляет собой такое же важное свойство всего живого, как обмен веществ, рост, размножение.

В процессе эволюции вместе с усложнением организации живых существ усложнялись формы и механизмы реактивности. Наиболее сложной и многообразной является реактивность человека.

Виды реактивности: индивидуальная, видовая, физиологическая, патологическая, специфическая и неспецифическая.

Иммунологическая реактивность является важнейшим выражением реактивности вообще и специфической индивидуальной (физиологической или патологической) реактивности в частности.

Под иммунитетомпонимают способ защиты организма от живых тел или веществ, несущих на себе генетически чужеродную информацию.

Иммунобиологические механизмы обеспечивают: 1) невосприимчивость человека к инфекционным болезням; 2) генетическое постоянство клеток.

По способу происхождения различают видовой и приобретенный иммунитет.

Видовой иммунитет является наследственным признаком данного вида животных. Например, рогатый скот не болеет сифилисом, гонореей, малярией.

По прочности (стойкости) видовой иммунитет разделяют на абсолютный и относительный.

Абсолютный иммунитет возникает с момента рождения и является настолько прочным, что никакими воздействиями внешней среды его не удается ослабить или уничтожить. Например, не удается вызвать полимиелит у собаки, даже на фоне любых дополнительных воздействий (голодание, охлаждение, травма и др.).

Относительный видовой иммунитет менее прочен и зависит от воздействий внешней среды.

Приобретенный иммунитет делят на естественно и искусственно приобретенный. Каждый из них по способу возникновения разделяется на активный и пассивный.

Естественно приобретенный активный иммунитет возникает после перенесения соответствующего инфекционного заболевания.

Естественно приобретенный пассивный иммунитет (врожденный или плацентарный) обусловлен переходом антител из крови матери к плоду, может также передаваться и с молоком матери. Пассивным путем новорожденные дети получают иммунитет к кори, скарлатине, дифтерии.

Искусственный иммунитет воспроизводится человеком в целях предупреждения заразных заболеваний.

Активный искусственный иммунитет достигается путем прививки здоровым людям или животным культуры убитых или ослабленных патогенных микробов, ослабленных бактерийных токсинов (анатоксинов) или вирусов. В этих случаях прививочный материал называют вакциной.

Пассивный искусственный иммунитет воспроизводится введением человеку сыворотки, содержащей антитела против микробов и их токсинов (эффективно против дифтерии, столбняка, ботулизма). Сыворотки получают обычно из крови лошадей, которых иммунизируют соответствующим токсином.

Киммуннокомпетентным клеткам относят: Т- и В -лимфоциты, NK-клетки и антигенпредставляющие клетки (макрофаги, дендритные клетки, клетки Лангерганса, отросчатые клетки лимфоузлов).

Клеточные элементы иммунной системы организованы в тканевые и органные структуры: это селезенка, лимфатические узлы, пейеровы бляшки кишечника, миндалины, тимус и костный мозг (в определенной степени можно отнести кровь и лимфу, за счет части лимфоцитов и макрофагов, там циркулирующих). Лимфоциты составляют исключительно неоднородную популяцию клеток. Установлено, что индивидуальные лимфоциты способны отвечать лишь на ограниченную группу структурно сходных антигенов. Эта «специализированность» существует еще до первого контакта с данным антигеном и определяется наличием у лимфоцита мембранных рецепторов, специфических для детерминант этого антигена.

Таким образом, одна группа (клон) лимфоцитов будет отличаться от другой группы структурой антигенсвязывающего центра своих рецепторов, и следовательно, тем набором антигенов, которые могут стимулировать ответ этих клеток. Способность организма отвечать на любой антиген обеспечена очень большим количеством клонов лимфоцитов.

Лимфоциты на своей поверхности экспрессируют большое количество молекул, по которым при помощи моноклональных антител идентифицируют их принадлежность к определенной клеточной популяции. Чаще с этой целью выявляют дифференцировочные антигены CD. Лимфоциты различаются не только по специфичности рецепторов, но и по функциональным свойствам.

Различают два основных класса лимфоцитов: 1) B-лимфоциты
(30 %), которые служат предшественниками антителообразующих клеток; 2)Т- или тимусзависимые лимфоциты(60 %).

Т-лимфоциты подразделяются на ряд клонов:

а) Т-хелперы (CD4) — распознают детерминанты антигенной молекулы и стимулируют В-клетки к пролиферации и дифференцировке в антителообразующие клетки. Хелперная функция осуществляется путем образования растворимых неспецифических факторов — лимфокинов.

б) Т-киллеры (СD8, цитотоксические лимфоциты) — распознают клетки с чужеродными антигенами и лизируют их (с помощью цитолитического белка перфорина). Клетка может участвовать в нескольких циклах лизиса, не разрушаясь при этом сама. Т-киллеры играют особо важную роль в разрушении вируссодержащих клеток и при некоторых формах противоопухолевого иммунитета.

в) Т-супрессоры (CD8). Их функция состоит в способности угнетать иммунный ответ. Супрессия осуществляется путем

Наши рекомендации