Стабилизация изображения на сетчатке
Глаз человека непрерывно движется. Это ведет к постоянному перемещению изображения объекта по сетчатке. Движения связаны с необходимостью помещать изображение в центральную ямку, где острота зрения максимальна, и потребностью постепенно сдвигать его, чтобы за счет активации новых рецепторов сохранить изображение. Именно поэтому, когда изобра-
жение постепенно уходит с середины центральной ямки, оно вновь возвращается туда быстрым скачком глазного яблока (саккадой). На этот “дрейф” накладывается тремор — дрожание с частотой 150 циклов в секунду и амплитудой, равной примерно 0,5 диаметра колбочки (рис. 5.24).
Попытки стабилизировать изображение на сетчатке с помощью специальной техники приводили к постепенному побледнению, а затем и полному его исчезновению (Притчард, 1974). Эти эксперименты подтверждают предположение, что попадание изображения на одни и те же рецепторы ведет к прекращению импульсации в волокнах зрительного нерва Однако через некоторое время образ вновь возникает, но уже фрагментарно, и появление того или иного фрагмента зависит от его значимости. Например, лицо человека всегда исчезает осмысленными частями, тогда как абстрактный рисунок появляется вновь в самых разнообразных сочетаниях. Этот феномен объясняют основные концепции зрительного восприятия. Одна предполагает, что для реализации врожденной способности к восприятию необходим опыт, поскольку тот или иной образ воспринимается в результате комбинации в мозге отдельных следов, образовавшихся там ранее и соответствующих различным уже усвоенным элементам. Другая, “гештальт”-теория, предполагает врожденную способность к целостному восприятию. Согласно ей образ сразу воспринимается без какого-то синтеза его частей, благодаря способности мозга воспринимать форму, целостность, организацию без предварительного опыта (Притчард, 1974).
Кроме непроизвольных движений глаз существуют их произвольные движения. В отличие от других органов чувств глаза очень активны. Наружные глазные мышцы нацеливают глаза на интересующие человека объекты, помещая их изображение в центральную ямку (Нотон, Старк, 1974)
Рис 5 24 Как показал Ф Эттнив, при зрительном узнавании важными признаками служат кр>тые изгибы линий Он выделил в изображении спящей кошки 38 точек наибольшей кривизны и соединил их прямыми линиями, устранив таким образом все остальные изгибы Полученное изображение легко распознается, по-видимому, при зрительном восприятии резкие искривления линий доставляют мозгу очень ценную информацию (Притчард, 1974) |
Процессы зрительного обучения и распознавания связаны с постоянным сопоставлением воспринятого материала и извлеченной из памяти информацией. Система памяти в мозге содержит внутреннее отображение каждого распознаваемого объекта (нейронные ансамбли, которые возбудились при его первоначальном восприятии). Зрительное обучение, или ознакомление с объектом, — это и есть процесс построения такого внутреннего отображения. Узнавание предмета при его повторном предъявлении происходит путем сличения его с соответствующим следом, хранящимся в памяти (Нотон, Старк, 1974).
Изображения на сетчатке, имеющие разные угловые размеры (например, закрытая и открытая дверь), порождают восприятия, в которых размеры объектов сохраняются. Правило константности величины состоит в том, что при данных размерах изображения на сетчатке величина объекта растет с увеличением расстояния до него. Впечатление глубины, т. е. восприятие одного предмета впереди или позади другого, может возникать при различных условиях стимуляции. Одним из них является диспаратность изображений на сетчатке (результат геометрических отношений между лучами света, полученными от объекта каждым глазом). Изображение объекта в этом случае на обеих сетчатках несколько отличается по величине, форме и положению. Когда один из двух предметов находится дальше, а другой ближе, горизонтальное расстояние между их изображениями на правой и левой сетчатках будет различным. Степень та- |
Рис. 5.25. Как показал Ф Эттнив, при зрительном узнавании важными признаками служат крутые изгибы линий (Притчард, 1974). |
Человеку требуется в среднем больше времени для положительного узнавания (в котором он подтверждает идентичность видимого объекта с тестовым), чем для того, чтобы убедиться, что данный объект “не тот”. К тому же для узнавания сложных объектов нужно больше времени, чем для простых. Это означает, что в мозге происходит последовательное сличение признаков. Страница книги, находящаяся на расстоянии слегка вытянутой руки, занимает на сетчатке участок примерно в 20 градусов. Это во много раз больше углового размера участка, который проецируется на центральную ямку. При таких условиях человеку приходится переводить взгляд, последовательно фиксируя каждый участок страницы.
Рис. 5. 26 При осмотре какого-либо объекта в движениях глаз обнаруживаются определенные закономерности. В одном из опытов А. Ярбуса тест-объектом служила фотография скульптуры Нефертити. При анализе записи движений глаз испытуемого создается впечатление, что путь движения взора образует довольно правильные циклы, а не пересекает фигуру в различных случайных направлениях (Физиология зрения, 1992). |
Исследование процесса фиксации взгляда на зрительном изображении привело к выводу, что наиболее информативными частями контуров рисунков являются углы и крутые изгибы. В 1954 г. Ф. Эттнив показал это на фигуре, полученной отбором 38 точек наибольшей кривизны в рисунке спящей кошки, соединив их прямыми линиями. Такое изображение легко распознается (рис. 5.25). Запись электрической активности коры человека показала наличие и детекторов углов (Нотой, Старк, 1974).
А.Л. Ярбус (Физиология зрения, 1992) зафиксировал перемещение взора испытуемого при разглядывании фотографии скульптуры Нефертити. Линии, отражающие саккадические движения глаз, образуют широкие полосы, идущие от одной части изображения к другой, но не пересекающие его во всех возможных направлениях. Виден ряд циклов, в каждом из которых взгляд останавливается на главных элементах скульптуры (рис. 5.26).
Д. Нотой и Л. Старк разработали гипотезу о механизме зрительного восприятия, позволяющую предсказать и объяснить регулярность движения глаз. Они показали, что при рассмотрении изображения глаза обегали определенный путь, который был назван путем сканирования. Внутреннее отображение
Рис. 5.27. “Кольцо признаков” — предполагаемая схема организации внутреннего отображения объекта. Объект (А) распознается по его главным элементам, или признакам (Б) и представлен ими в памяти вместе с движениями глаз, составлявшими путь обхода (В) при ознакомлении с данным объектом Таким образом, кольцо состоит из следов сенсорной памяти (пунктирные кружки), в которых записаны сами признаки, и следов двигательной памяти (сплошные кружки), содержащих информацию о движениях глаз от одного признака к другому (Нотой, Старк, 1974).
объекта в системе памяти представляет собой совокупность признаков. Эти признаки организованы в структуру, которую можно назвать кольцом признаков (рис. 5.27). Такое кольцо состоит из цепи чередующихся следов сенсорной и моторной памяти, в каждом звене которой регистрируется какой-нибудь признак объекта и движение глаз, необходимое для перехода к фиксации следующего признака. Это кольцо закрепляет определенную последовательность признаков и движений глаз, соответствующую пути обхода данного объекта.
Согласно данной гипотезе, при первом осмотре объекта испытуемый как бы ощупывает его взглядом и вырабатывает для него путь сканирования. В это время у него образуются следы памяти, составляющие кольцо признаков, в котором записана как сенсорная, так и моторная активность нейронов. Когда он потом вновь встречается с тем же объектом, то узнает его, сличая с кольцом признаков, которое и является внутренним отображением этого объекта в памяти.
Константность восприятия
кой диспаратности возрастает с увеличением различия в удаленности предметов от глаз, и это служит для мозга источником информации о глубине и расположении их в поле зрения. В коре мозга животных обнаружены отдельные нейроны, которые в наибольшей степени активируются определенными величинами диспаратности. Оптимальными стимулами для них служат края, находящиеся впереди или позади фронтальной поверхности.
Эффект контраста (изменение цвета, окруженного кольцом другого цвета) можно объяснить возбуждением ганглиозных клеток сетчатки с простыми рецептивными полями типа “on-off”. Порог реакции этих ганглиозных клеток определяется не абсолютной освещенностью, а скорее ее отношением к освещенности окружающего фона или к среднему уровню освещенности.
И.Н. Пигарев и Е.Н. Родионова (1985) обнаружили константные нейроны*-детекторы. Они реагировали не только на зрительные сигналы, но и на положение глаз в орбитах. Это позволяет объяснить явление константности восприятия, поскольку можно предположить, что в течение жизни человека происходит формирование нейронов, активность которых приводит к сохранению постоянства изображения, несмотря на изменение положения глаз в орбитах.
Зрительные сигналы, поступающие в зрительную кору, расходятся, образуя дорзальный и вентральный потоки обработки информации. Вентральная подсистема, включающая нижневисочную кору, различает сложные зрительные образы, поэтому ее называют системой “что”. Дорзальный поток, включающий теменную кору, обрабатывает пространственную информацию и называется системой “где”. В системе “что” константность выражается в том, что предметные свойства абстрагируются от конкретных условий восприятия. Например, константность восприятия цвета создается следующим образом. Поверхность предмета характеризуется специфическим спектром поглощения, поэтому отражаемый ею световой поток зависит от условий освещения. Однако, несмотря на изменение условий освещения, мы воспринимаем цвет поверхности неизменным. Зрительный анализатор измеряет неизменные свойства отражающей поверхности. Чтобы определить отражающие свойства поверхности, нужно знать спектральную характеристику осветителя и спектр отраженного поверхностью света. Цветовой анализатор имеет константные и аконстантные детекторы цвета. Первые в отличие от вторых реагируют на цвет объекта независимо от условий освещения.
Они образуют соответственно аконстантный и константный экраны отображения цветов. Аконстантные детекторы цвета измеряют раздельно цвет освещения и цвет отраженного светового потока. Сигнал относительно условий освещения смещает проекцию цвета по константному экрану так, что возбужденным остается тот же константный детектор цвета, несмотря на изменение отраженного от предмета светового потока. Таким образом, константный экран цвета кодирует не характеристику отраженного света, а отражающие свойства поверхности. Разным характеристикам отражающей поверхности соответствуют детекторы на разных участках константного экрана. Так, белая поверхность, освещаемая разными источниками освещения, будет возбуждать один и тот же константный детектор белизны. Самосветящиеся объекты, где освещение отсутствует, будут вызывать возбуждения, совпадающие на аконстантном и константном эк-
ранах. При изменении спектра самосветящихся объектов локус возбуждения смещается по аконстантному и константному экранам одинаково в связи с тем, что сигнал относительно условий освещения отсутствует (Соколов, 2000).
В системе “где” константность восприятия связана с характеристиками пространства. При переводе взора с одной точки на другую изображение всей сцены смещается относительно сетчатки, однако мы не замечаем этого сдвига. Зато в случае последовательного образа движение глаз приводит к субъективному перемещению последовательного образа в пространстве. Сигналы, поступающие от системы управления движения глаз, “перемещают” постоянный по своей локализации на сетчатке последовательный образ. В этой системе также есть аконстантные и константные детекторы. Детекторы первичной зрительной коры характеризуются рецептивными полями, “привязанными” к ретинотони-ческой проекции. При смещении линии взора локальный стимул выходит за границы рецептивного поля. Поэтому при изучении рецептивных полей нейронов сетчатки и первично зрительной коры необходимо обездвиживание животного или исключение движения глаз. Детекторы первичной коры, зависящие от положения стимула относительно сетчатки, являются аконстантными детекторами. Нейроны теменной коры “привязаны” не к сетчатке, а к внешнему пространству. При изменении линии взора, когда стимул выходит из рецептивного поля аконстантного нейрона, константный нейрон теменной коры продолжает реагировать. Зато, если стимул перемещается в пространстве при фиксированном положении линии взора, нейрон перестает отвечать.
Следовательно, рецептивное поле константного нейрона представляет собой не локальный участок сетчатки, а локальный участок внешнего пространства. Это становится понятным, если допустить, что на каждом константном детекторе конвергируют все аконстантные детекторы. Эта конвергенция зависит от сигналов относительно линии взора, “подключающей” определенный аконстантный детектор к определенному константному нейрону. При смещении линии взора к константным детекторам подключаются другие аконстантные детекторы. Хотя сцена и смещается по сетчатке, она остается на тех же константных детекторах. Как бы ни перемещался взор, каждый константный детектор продолжает представлять все тот же участок внешнего пространства. В случае последовательного образа, когда возбуждение локуса сетчатки остается неизменным при движении глаз, его проекция относительно константного экрана перемещается. Это происходит потому, что сигнал, поступающий от движений глаз, “перемещает” возбуждение по константному экрану в соответствии с ожидаемым смещением сцены по аконстантному экрану (Соколов, 2000). Объединение информации, находящейся в системах “где” и “что”, происходит при участии оперативной памяти.