Генетические основы существования групп в системе АВО. Наследование групп крови. Наследование резус — фактора. Резус — конфликт. Основные принципы применения гемотрансфузии в медицине.

Генетические основы групп крови

Резус-фактор, как и группу крови, необходимо учитывать при переливании крови. При попадании резус фактора в кровь резус-отрицательного человека, к нему образуются антирезусные антитела, которые склеивают резус-положительные эритроциты в монетные столбики.
Наследование

резус-фактора:
Наследование резус-фактора кодируется тремя парами генов и происходит независимо от наследования группы крови. Наиболее значимый ген обозначается латинской буквой D. Он может быть доминантным — D, либо рецессивным — d. Генотип резус-положительного человека может быть гомозиготным — DD, либо гетерозиготным — Dd. Генотип резус-отрицательного человека может быть — dd.
Резус-конфликт
Может возникнуть при беременности резус-отрицательной женщины резус-положительным плодом резус-фактор от отца. При попадании эритроцитов плода в кровоток матери, против резус-фактора у нее образуются антирезусные антитела. В норме кровоток матери и плода смешивается только во время родов, поэтому теоретически возможным резус-конфликт считается во вторую и последующие беременности резус-положительным плодом. Практически в современных условиях часто происходит повышение проницаемости сосудов плаценты, различные патологии беременности, приводящие к попаданию эритроцитов плода в кровь матери и во время первой беременности. Поэтому антирезусные антитела необходимо определять при любой беременности у резус-отрицательной женщины начиная с 8 недель время образования резус-фактора у плода. Для предотвращения их образования во время родов, в течение 72 часов после любого окончания беременности срока более 8 недель вводят антирезусный иммуноглобулин.

Гемотрансфузия — переливание крови, частный случай трансфузии, при которой переливаемой от донора к реципиенту биологической жидкостью является кровь или её компоненты.
Производится через вены в острых случаях — через артерии также с использованием препаратов крови для замещения эритроцитов, лейкоцитов, белков плазмы крови, также для остановки восстановления объёма циркулирующей крови, её осмотического давления при потере крови для этих целей могут использоваться также заменители крови.
Кроме потери крови показанием могут быть также аплазии кроветворения, ожоги, инфекции, отравления и другие.
Переливание может быть прямым и с предварительным сбором крови донора для хранения.
При переливании непроверенной крови в кровь реципиента могут попадать возбудители болезней, имеющиеся у донора.
Кровь донора и реципиента должна быть совместима:
1.по группе крови,
2.по резус-фактору.
В ряде случаев при переливании учитывают наличие и других антигенов, например, Kell.
Кровь переливают строго по совпадению группы крови и резус фактора, лет 30 назад считалось, что первая группа крови с отрицательным резус-фактором является универсальной для всех групп, но с открытием агглютиногенов это мнение было признано неверным.
На данный момент универсальной крови нет, хотя есть равноценный кровезаменитель — т. н. голубая кровь. При переливании обязательнособлюдаются группа крови и резус-фактор.

23. Генотип как целое. Ядерная наследственность. Закономерности наследования неядерных генов. Цитоплазматическая наследственность у про- и эукариот.
Генотип — генетическая наследственная конституция организма, совокупность всех его генов. В современной генетике рассматривается не как механический набор независимо функционирующих генов, а как единая система, в которой любой ген может находиться в сложном взаимодействии с остальными генами.
Большинство генов может существовать в нескольких модификациях аллелях, а поскольку число генов составляет десятки тысяч, то практически все люди различаются по генотипам. Исключение представляют однояйцевые монозиготные близнецы, имеющие совершенно одинаковые генотипы. Далеко не все гены проявляют своё действие либо находятся между собой в сложных взаимосвязях и взаимодействиях.

Патологические гены, которые обусловливают наследственные болезни и аномалии развития, также разнородны. Одни из них — доминантные — проявляют своё действие при наличии на гомологичной хромосоме нормального гена. В этих случаях болезнь передаётся из поколения в поколение и заболевают в среднем до 50% детей больного. Другие гены — рецессивные — проявляют своё действие лишь в тех случаях, когда ребёнок наследует патологический ген от каждого из клинически здоровых родителей. В таких семьях случаев аналогичного заболевания у других родственников, как правило, нет. Вероятность повторного рождения больного ребёнка в такой семье — 25%. Существуют и другие варианты действия патологических генов.
Цтоплазматическая наследственность внеядерная, нехромосомная, плазматическая, преемственность материальных структур и функциональных свойств организма, которые определяются и передаются факторами, расположенными в цитоплазме. Совокупность этих факторов — плазмагенов, или внеядерных генов, составляет плазмон подобно тому, как совокупность хромосомных генов — геном. Плазмагены находятся в самовоспроизводящихся органеллах клетки — митохондриях и пластидах в том числе хлоропластах и др.. Указанием на существование Н. ц. служат, прежде всего, наблюдаемые при скрещиваниях отклонения от расщеплений признаков, ожидаемых на основе законов Менделя.
Ядерная наследственность.
Установлено, что некоторые мутации пластид вызываются ядерными генами, контролирующими отчасти и функционирование пластид. Показано также, что количество ДНК в митохондриях недостаточно для того, чтобы нести всю информацию об их функциях и строении; т. о., и структура митохондрий, по крайней мере частично, определяется геномом. Ядерные и внеядерные гены могут взаимодействовать и при реализации фенотипа.
Генофонд — совокупность генов популяции вида или другой

систематической единицы на данном отрезке времени.
Геном — совокупность гаплоидного набора хромосом организма.
Теория, рассматривающая генотип как целостную систему, основана на двух постулатах:

1. Один ген влияет на формирование нескольких признаков плейотропия.
2. Каждый признак организма развивается в результате взаимодействия многих генов.
Характер проявления действия гена в составе генотипа как системы может изменяться в различных ситуациях и под влиянием различных факторов. В этом можно легко убедиться, если рассмотреть свойства генов и особенности их проявления в признаках:

1.Ген дискретен в своем действии, т. е. обособлен в своей активности от других генов.
2.Ген специфичен в своем проявлении, т. е. отвечает за строго определенный признак или свойство организма.
3.Ген может усиливать степень проявления признака при увеличении числа доминантных аллелей дозы гена.
4.Один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена.
5.Разные гены могут оказывать одинаковое действие на развитие одного и того же признака часто количественных признаков — это множественные гены, или полигены.
6.Ген может взаимодействовать с другими генами, что приводит к появлению новых признаков. Такое взаимодействие осуществляется опосредованно — через синтезированные под их контролем продукты своих реакций.
7.Действие гена может быть модифицировано изменением его местоположения в хромосоме эффект положения или воздействием различных факторов внешней среды.
Ядерная наследственность определяется генетическим материалом, расположенным в ядре клетки. Материальным носителем ядерной наследственности являются молекулы ДНК, входящие в состав хромосом. Реализуется и при вегетативном размножении, но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями.
Внеядерное наследование
Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития.
Цитоплазматическая наследственность у про- и эукариот:
Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем, что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования был впервые описан в 1908 г. К. Корренсом в отношении признака пестрых листьев у некоторых растений.
Критерии цитоплазматической наследственности:
1.Отсутствие количественного менделеевского расщепления.
2.Невозможность выявления сцепления.
3.Различные результаты анализирующих реципрокных скрещиваний.
4.Наследование только по материнской линиичерез яйцеклетку.
Другим примером цитоплазматического наследования признаков могут служить некоторые патологические состояния, описанные у человека, причиной которых является первичный дефект митохондриальной ДНК. У человека с цитоплазматической наследственностью связаны болезнь Лебера и анэнцефалия.

24. Типы наследования признаков — независимое, сцепленное, аутосомное, сцепленное с полом, голандрическое, моногенное, полигенное. Примеры.

1.Независимое
Такой характер наследования признаков впервые был описан Г. Менделем в опытах на горохе, когда одновременно анализировалось наследование в ряду поколений нескольких признаков, например цвета и формы горошин. Каждый из них в отдельности подчинялся закону расщепления в F2. В то же время разные варианты этих признаков свободно комбинировались у потомков, встречаясь как в сочетаниях, наблюдаемых у их родителей желтый цвет и гладкая форма или зеленый цвет и морщинистая форма, так и в новых сочетаниях желтый цвет и морщинистая форма или зеленый цвет и гладкая форма.

На основании анализа полученных результатов Г. Мендель сформулировал закон независимого наследования признаков, в соответствии с которым: Разные пары признаков, определяемые неаллельными генами, передаются потомкам независимо друг от друга и комбинируются у них во всех возможных сочетаниях.

2.Сцепленное с полом

Анализ наследования признака окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдельного типа наследования признаков сцепленное с полом наследование.

Характер наследования сцепленных с полом признаков в ряду поколений зависит от того, в какой хромосоме находится соответствующий ген. В связи с этим различают Х — сцепленное и Y-сцепленное голандрическое наследование.
Х — сцепленное наследование.

Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную Х-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству.
У млекопитающих в том числе и человека мужской пол получает Х — сцепленные гены от матери и передает их дочерям. Приэтом мужской пол никогда не наследует отцовского Х — сцепленного признака и не передает его своим сыновьям.
Так как у гомогаметного пола признак развивается в результате взаимодействия аллельных генов, различают Х — сцепленное доминантное и Х — сцепленное рецессивное наследование. Х — сцепленный доминантный признак красный цвет глаз у дрозофилы передается самкой всему потомству. Самец передает свой Х — сцепленный доминантный признак лишь самкам следующего поколения. Самки могут наследовать такой признак от обоих родителей, а самцы — только от матери.
Например:
Гемофилия
Дальтонизм
Мышечная дистрофия
Атрофия зрительного нерва
Пигментная ксеродерма и ретинит
Геморрагический диатез
Голандрическое наследование:
Активно функционирующие гены Y-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола.
Например:
Гипертрихоз мочки уха
Синдактилия 2-3
Ихтиоз
Дифференцировка семенников
3.Аутосомное
Характерные черты аутосомного наследования признаков обусловлены тем, что соответствующие гены, расположенные в аутосомах, представлены у всех особей вида в двойном наборе. Это означает, что любой организм получает такие гены от обоих родителей. В соответствии с законом чистоты гамет в ходе гаметогенеза все половые клетки получают по одному гену из каждой аллельной пары.
Аутосомно-доминантный тип наследования:

а. При достаточном числе потомков признак обнаруживается в каждом поколении.
б. Редкий признак наследуется примерно половиной детей.
в. Потомки мужского и женского пола наследуют этот признак одинаково.

г. Оба родителя в равной мере передают этот признак детям.

Аутосомно-рецессивный тип наследования:

а. Признак может передаваться через поколение даже при достаточном числе потомков.

б. Признак может проявиться у детей в отсутствие его у родителей. Обнаруживается тогда в 25% случаев у детей .
в. Признак наследуется всеми детьми, если оба родителя больны.
г. Признак в 50% развивается у детей, если один из родителей болен.

д. Потомки мужского и женского пола наследуют этот признак одинаково.
5.Сцепленное.
Анализ наследования одновременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов F1 иногда отличаются от ожидаемых в случае их независимого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали тенденцию к наследованию преимущественно родительских сочетаний признаков. Такое наследование признаков было названо сцепленным. Сцепленное


наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.
Зависимость сцепленного наследования признаков от локализации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления.

25. Хромосомная теория наследственности. Эксперименты Моргана, доказывающие явления сцепленного наследования и нарушения сцепления. Понятие генетических карт хромосом.
Хромосомная теория Т. Моргана:
1.Гены расположены в хромосоме в определенной линейной последовательности.
2.Каждый ген занимает отдельный локус. Аллельные гены расположены в одинаковых генах гомологичных хромосом.
3.Гены 1 хромосомы наследуются совместно, образуя группу сцепления.
4.Число групп сцепления равно гаплоидному набору хромосом каждого вида.
5.Сцепление генов может нарушаться в процессе кроссинговера.
6.Частота кроссинговера зависит от расстояния между генами, чем дальше гены друг от друга, тем чаще происходит кроссинговер.
На вопрос как будут наследоваться признаки, гены которых находятся в одной хромосоме, дал американский генетик Т. Морган, проводивший в 1911 году опыты на плодовых мухах дрозофилах, различающихся по двум признакам: самка имела серое тело и короткие крылья, самец — черное тело и длинные крылья. В первом поколении все мухи оказались с серым телом и длинными крыльями. Следовательно, эти признаки доминировали. В анализирующем скрещивании гетерозиготного самца из первого поколения с самкой с рецессивными признаками среди потомков оказалось не 4 фенотипических класса, как следовало бы ожидать при дигибридном скрещивании, а два, в отношении 1:1. Это говорило о том, что исследуемые гены расположены в одной хромосоме и наследуются вместе, сцеплено, как одна альтернативная пара, не обнаруживая независимого наследования. Такой характер наследования получил название закона сцепления. Суть его заключается в том, что гены , находящиеся в одной хромосоме образуют группу сцепления и наследуются вместе по схеме моногибридного скрещивания. У каждого вида групп сцепления столько, сколько у него хромосом в гаплоидном наборе.

Дальнейшие опыты Моргана показали, что сцепление не всегда бывает абсо-лютным. Нарушения сцепленного наследования вызывается процессом кроссинговера в профазе первого деления мейоза, когда может произойти перекрёст некоторых генов, ранее находившихся в одной хромосоме, а затем оказались в разных гомологичных хромосомах и попали в разные гаметы.
Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.
Впервые в 1913 — 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом.
Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов.

27. Генетика пола. Аутосомы и гетерохромосомы. Доказательство генетического определения признаков пола. Хромосомное определение пола у различных организмов и человека.
Генетика пола — раздел генетики человека, изучающий роль механизмов наследственности и наследственной изменчивости в процессе определения и дифференциации пола. При этом имеет значение, как определенный набор хромосом, так и действиеряда генов, одни из которых расположены на половых хромосомах, другие — на аутосомах. Обычно выделяют несколько уровней половой дифференциации. Первый связан с наличием Y хромосомы, присутствие которой необходимо для дифференциации гонад по мужскому типу. У мужчин формируется 2 типа спермиев с Х хромосомой 23, X и с Y хромосомой 23, Y. В яйцеклетках набор хромосом в норме всегда 23, Х. Оплодотворение яйцеклетки спермием 23, Х приводит к развитию зародыша женского пола с набором хромосом 46, XX, оплодотворение же спермием 23, Y ведёт к возникновению зародыша мужского пола 46, XY.
Аутосома — у живых организмов с хромосомным определением пола называют парные хромосомы, одинаковые у мужских и женских организмов.
Гетерохромосома — половая хромосома.
Важным доказательством в пользу наследственной детерминированности половой принадлежности организмов является наблюдаемое у большинства видов соотношение по полу 1:1.

Такое соотношение может быть обусловлено образованием двух видов гамет представителями одного пола гетерогаметный пол и одного вида гамет — особями другого пола гомогаметный пол. Это соответствует различиям в кариотипах организмов разных полов одного и того же вида, проявляющимся в половых хромосомах. У гомогаметного пола, имеющего одинаковые половые хромосомы XX, все гаметы несут гаплоидный набор аутосом плюс Х-хромосому. У гетерогаметного пола в кариотипе кроме аутосом содержатся две разные или только одна половая хромосома XY или ХО. Его представители образуют два вида гамет, различающиеся по гетерохромосомам: Х и Y или Х и 0.
Хромосомный механизм определения половой принадлежности организмов обеспечивает равновероятность встречаемости представителей обоих полов. Это имеет большой биологический смысл, так как обусловливает максимальную вероятность встречи самки и самца, потомки получают более разнообразную наследственную информацию, поддерживается оптимальная численность особей в популяции.

Варианты хромосомного определения пола
Женский пол
Мужской пол
Примеры
Гомогаметный ХХ
Гетерогаметный ХУ
Млекопитающие, дрозофила
Гомогаметный ХХ
Гетерогаметный ХО
Прямокрылые насекомые кузнечик
Гетерогаметный ZW
Гомогаметный ZZ
Птицы, пресмыкающиеся, бабочки.

28. Первичные и вторичные половые признаки. Предопределение пола в процессе развития. Нарушение развития пола на примере синдрома Морриса. Наследование сцепленное с полом. Примеры.
Первичные половые признаки:
Совокупность особенностей, определяющих основные различия между самцом и самкой у животных, а также между мужчиной и женщиной.
половые железы семенники и яичники
половые протоки семяпроводы и яйцеводы
дополнительные образования различные железы
копулятивные органы
Вторичные половые признаки:
Признаки, характеризующие изменения в строении и функции различных органов, определяющих как половую зрелость, так и половую принадлежность. Зависят от первичных, развиваются под воздействием половых гормонов и появляются в период полового созревания. К ним относятся особенности развития костно-мышечной системы, пропорций тела, подкожно-жировой клетчатки и волосяного покрова, степень развития молочных желёз, тембр голоса, особенности поведения и др.
К ним относятся: (особенности развития костно-мышечной системы,пропорций тела,подкожно жировой клетчатки,волосяного покрова,степень развития молочных желез,тембр голоса
особенности поведения и др.)
Синдром Морриса:
Тестикулярная феминизация — мужской ложный гермафродитизм у пациентов с женскими наружными гениталиями; безволосая псевдоженщина. Заболевание было изучено в 1953 году Ф. Моррисом отсюда второе название синдрома тестикулярной феминизации — синдром Морриса, он же предложил использовать термин тестикулярная феминизация.
Синдром тестикулярной феминизации, достаточно редко встречающееся заболевание, являющиеся наследственным. Сущность синдрома Морриса заключается в появлении у лиц генетически мужского пола женского фенотипа. Патогенез заболевания до сих пор полностью не изучен. Существует гипотеза, что ткани организма теряют чувствительность к собственным андрогенам организма, выделяемых тестикулами, и развитие организма идет по женскому генотипу.
Признаки синдрома Морриса чаще всего проявляются в период полового созревания. При полной форме синдрома тестикулярной феминизации у пациентов с типичным женским внешним видом нет оволосения на лобке, отсутствуют менструации, грудные железы не развиты. Уровень в крови мужских половых гормонов в пределах нормы. При гинекологическом обследовании обнаруживаются женские наружные гениталии с недоразвитыми большими и особенно малыми половыми губами, узкое, укороченное влагалище, матка отсутствует, яички, в основном, располагаются у паховых каналов.
По результатам большинства исследований пациентов с синдромом тестикулярной феминизации, таким людям лучше присваивать женский пол. В период полового созревания у больных развиваются вторичные половые признаки, психосексуальная ориентация, наружные гениталии также имеют выраженное женское строение. Кроме того, лечение мужскими андрогенами у больных с синдромом Морриса бесперспективно из-за отсутствия чувствительности к мужским половым гормонам.
Наследование, сцепленное с полом.
Половые хромосомы Х и Y содержат большое количество генов. Наследование определяемых ими признаков называют наследованием, сцепленным с полом, а локализацию генов в половых хромосомах называют сцеплением генов с полом.
В Х- хромосоме имеетсяучасток, для которого в У — хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка хромосомы, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.
При локализации генов в негомологичных участках или в Х- и У- хромосомах наблюдается полное сцепление с полом.
К таким заболеваниям относятся: гемофилия, дальтонизм, мышечная дистрофия, потемнение эмали зубов, агаммглобулинемии и т.д.
Х — хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х — хромосому отца, а сын — Х — хромосому матери. Если наоборот, то такое наследование называют крисс-кросс.

29. Нуклеиновые кислоты. Роль ДНК и РНК в реализации наследственной информации клетки. Доказательство наследственной роли ДНКопыты Гриффитса и Эвери.
Нуклеиновые кислоты- высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты фосфодиэфирная связь. Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая ДНК и рибонуклеиновая РНК.
Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.
Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.
Роль ДНК и РНК в передаче наследственной информации.
ДНК дезоксирибонуклеиновая кислота — это молекула, состоящая из двух спирально закрученных полинуклеотидных цепей рис. 14. ДНК образует правую спираль, диаметром примерно 2 нм, длиной в развернутом виде до 0,1 мм и молекулярной массой до 6ґ10-12 кДа. Структура ДНК была впервые определена Д.Уотсоном и Ф.Криком в 1953 г. Мономером ДНК является дезоксирибонуклеотид, состоящий из азотистого основания — аденина А, цитозина Ц, тимина Т или гуанина Г, — пентозы дезоксирибозы и фосфата.
РНК рибонуклеиновая кислота — это молекула, состоящая из одной цепи нуклеотидов рис. 13. Рибонуклеотид состоит из одного из четырех азотистых оснований, но вместо тимина Т в РНК входит урацил У, а вместо дезоксирибозы — рибоза.
Белки синтезируют все клетки, кроме безъядерных. Структура белка определяется ядерной ДНК. Информация о последовательности аминокислот в одной полипептидной цепи находится в участке ДНК, который называется ген. В ДНК заложена информация о первичной структуре белка. Код ДНК един для всех организмов. Каждой аминокислоте соответствует три нуклеотида, образующих триплет, или кодон. Такое кодирование избыточно: возможны 64 комбинации триплетов, тогда как аминокислот только 20. Существуют также управляющие триплеты, например, обозначающие начало и конец гена.
Синтез белка начинается с транскрипции, т.е. синтеза иРНК по матрице ДНК. Процесс идет с помощью фермента полимеразы по принципу комплементарности и начинается с определенного участка ДНК. Синтезированная иРНК поступает в цитоплазму на рибосомы, где и идет синтез белка.
тРНК имеет структуру, похожую на лист клевера, и обеспечивает перенос аминокислот к рибосомам. Каждая аминокислота прикрепляется к акцепторному участку соответствующей тРНК, расположенному на черешке листа. Противоположный конец тРНК называется антикодоном и несет информацию о триплете, соответствующем данной аминокислоте. Существует более 20 видов тРНК.
Перенос информации с иРНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по иРНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с иРНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам тРНК. При этом происходит сравнение кодона иРНК с антикодоном тРНК; если они комплементарны, фермент синтетаза сшивает аминокислоты, а рибосома продвигается вперед на один кодон.
Синтез одной молекулы белка обычно идет 1-2 мин один шаг занимает 0,2 с.
Доказательство роли ДНК:
В 1928 г. Ф. Гриффитс впервые получил доказательства воз­можной передачи наследственных задатков от одной бактерии к другой. Ученый вводил мышам вирулентный капсульный и ави-рулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали. При введении авирулентного штамма мыши оставались живыми. При введении вирулентного капсульного штамма, убитого нагре­ванием, мыши также не погибали. В следующем опыте он ввел смесь живой культуры авирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного и по­лучил неожиданный результат — мыши заболели пневмонией и погибли. Из крови погибших животных были выделены бакте­рии, которые обладали вирулентностью и были способны обра­зовать капсулу. Следовательно, живые бактерии авирулентного бескапсульного штамма трансформировались — приобрели свой­ства убитых болезнетворных бактерий. В дальнейшем другими учеными были подтверждены результаты опытов Ф. Гриффита в условиях пробирки.Основываясь на этих опытах,в1944 г.О. Эвери и его сотрудники Мак-Леод и Мак-Карти изучили роль разных веществ клетки вявлениях трансформации и получили убедительные доказательства того, что трансформирующим фак­тором является дезоксирибонуклеиновая кислота ДНК. Было установлено, что под действием дезоксирибонуклеазы — фермен­та, специфически разрушающего ДНК, активность трансформи­рующего фактора исчезла. В то же время рибонуклеаза и протео-литические ферменты не изменяли биологической активности трансформирующего фактора.

30. Процесс репликации. Полуконсервативный механизм репликации ДНК. Репликативная вилка. Репликон. Ферменты репликации. Этапы репликации.
Репликация — процесс удвоения ДНК.
Репликация у прокариот:
Ведущий фермент репликации — ДНК-полимераза, которая способна наращивать полинуклеотидные цепи в направлении 5 — 3, т.о. только одна из цепей синтезируется непрерывноведущая. Синтез отстающей тоже в направлении 5-3, но короткими фрагментами фрагменты Оказаки. Синтез каждого из этих фрагментов начинается с РНК — затравки праймер. Для ведущей требуется 1 акт инициации, для отстающей — несколько. На стадии инициации РНК — праймаза синтезирует короткую РНК — затравку. После того, как будет синтезировать РНК — праймер, ДНК — полимераза продолжит наращивать цепь.
После расплетения родительских цепей синтез дочерних осуществляется ДНК — полимеразой, использующей все АТФ. РНк — затравки не сохраняются и после реализации своей функции они удаляются за счет проявления 5!3 — эндонуклеазной активности. После удаления РНК — затравки, между 2 синтезированными участками ДНК остается разрыв, который ликвидируется ДНК — лигазой.
Для того, чтобы раскрылась двойная спираль ДНК необходимы ДНК — геликазы, которые садятся на ДНК и раскручивают двойную спираль, разрывая водородные связи между основаниями.
Белок второго типа

специфически связывается с одноцепочечной ДНК, не позволяя им сомкнуться.
Белок 3 типа, топоизомераза, способствует ослаблению связей на сверхскрученных участках ДНК, раскручивая узлы в области родительской двойной спирали перед репликативной вилкой. После такого раскручивания, топоизомераза замыкает разорванные фосфодиэфирные связи и восстанавливает структуру родительской ДНК.
Репликация у эукариот:
Начинается в нескольких точкахARS. Синтез ДНК происходит в S — периоде интерфазы клеточного цикла.
Там где происходит репликация называется репликационная вилка, которая движется последовательно вдоль ДНК от ее стартовой точки. По ходу процесса соседние репликоны соединяются. Репликоны формируют репликационный глазок. По ходу процесса соседние репликоны сливаются, образуя характерную У — образную конфигурацию. Когда репликация заканчивается, из 1 линейной родительской молекулы образуются 2 дочерние, каждая из которых представляет двойную спираль.

У эукариот 7 типов ДНК —полимераз, которые отвечают за репликацию и репарацию в ядре, митохондриях, пластидах.

31. Репарация генетического материала. Дорепликативная репарация световая. Темновая эксцизионнаярепарация. Примеры. Мутации, связанные с нарушением репарации. Мутон. Рекон.
Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физическими или химическими агентами. Осуществляется специальными ферментными системами клетки.
Световая репарация.
Начало изучению репара

Наши рекомендации