Внутренние напряжения в пластмассе. Предупреждение их

Возникновения

Остаточные напряжения.В пластмассовых изделиях, независимо от спо­соба их приготовления, всегда имеются значительные остаточные напряже­ния. Внутренние напряжения в акриловых протезах вызывают их преждев­ременное растрескивание и коробление. Протез представляет собой арми­рованное изделие, в котором зубы, кламмеры, дуги и др. детали являются арматурой. Температурные изменения размеров материалов арматуры мень­ше, чем пластмассы в 10-20 раз.

В местах монтажа арматуры полимер растягивается при охлгшдении и возникают местные напряжения. Большее напряжение возникает около фар­форовых зубов, чем пластмассовых. Таким образом, наличие арматуры по­вышает вероятность появления трещин.

К внутренним напряжениям приводит различная толщина отдельных час­тей изделия. Толстые части дают большую усадку по абсолютной величине, тонкие - меньшую, в связи с чем в местах перехода появляются напряжения. Остаточные напряжениявозникают в процессе изготовления полимера. При нагревании кюветы вначале повышается температура наружного слоя пластмассы и затвердевание начинается в поверхностных слоях, сопровож­даясь усадкой. Внутренние слои вначале имеют более низкую температуру. Опережение затвердевания наружного слоя в пластмассах горячей полиме­ризации приводит к возникновению в нем внутренних напряжений растяже­ния. В дальнейшем затвердевание внутренних слоев вызывает уменьшение их объема и они оказываются под воздействием растягивающего напряже­ния, т.к. к этому времени наружные слои приобретают жесткость.

Поскольку напряжения обязательно возникают в процессе изготовления протеза, их следует снимать. Для этого протез следует обработать при опре­деленном температурно-временном режиме в различных средах. При этом улучшаются механические свойства изделия, стабилизируются геометри­ческие размеры и увеличивается срок эксплуатации. В качестве сред тепло­носителей используют воздух и жидкости. Из различных видов термической обработки наиболее эффективным является отжиг, который надо проводить при такой температуре, когда изделие еще не деформируется.

М. М. Гернер и М. А. Нападов предлагают следующую термообработку протезов. Отжиг в термошкафу, нагревая изделие со скоростью 0,7-1,5°С в минуту до 80±3°С. После 3-4 часовой выдержке при этой температуре изде­лие медленно охлаждают до 30-40 С.

Растрескивание.Одним из самых распространенных видов разрушения пластмасс является возникновение трещин на поверхности материала при одновременном действии напряжения и окружающей среды.

При растрескивании, в зависимости от величины и характера распреде­ления напряжений, возникает одна магистральная трсгцнпа илм сстк?» мел ких трещин. При воздействии больших напряжений образуется обычно одна магистральная трещина, при малых напряжениях возникает множество тре­щин. Растрескивание проявляется особенно быстро при воздействии орга­нических растворителей (этиловый спирт, ацетон, бензол и др.).

Внутренние напряжения через некоторое время могут привести к трещинам на поверхности базиса. Например, можно часто видеть трещины, радиально расходящиеся в пластмассовом базисе от шеек фарфоровых зубов. Если про­тез, которым пользуется больной, часто высыхает при извлечении изо рта и вновь увлажняется, то со временем могут возникнуть трещины в результате чередующегося сжатия (при высыхании) и расширения (при поглощении воды). Базисные материалы с увеличенной водопоглащаемостыо более склонны к ра­стрескиванию. Если при полимеризации формовочная масса контактировала с водой, то получается полимер с повышенной водопоглощаемостью.

ВОПРОС 13

Характеристика металлических сплавов, применяемых в

Ортопедической стоматологии. Нержавеющая сталь,

Кобальто-хромовый сплав (КХС). Сплавы титана, их

Свойства, показания к применению. Изменение механических свойств нержавеющей стали после холодной

Деформации.

Чистые металлы в ортопедической стоматологии не применяются, т. к. для зуботехнических целей необходимы сплавы, обладающие разнообраз­ными свойствами.

Сплавы, применяемые в ортопедической стоматологии, должны иметь оп­ределенные свойства, которые можно разделить па две группы.

К первой относятся общемедицинские свойства.Сплавы не должны вы­зывать в полости рта пациента токсического и аллергического действия.

Ко второй относятся технологические свойства.

1. Высокая антикоррозийная стойкость.

2. Ковкость, текучесть при литье.

3. Прочность, твердость.

4. Малая усадка при литье, невысокая температура плавления.

5. Хорошая механическая и электролитическая обработка и полировка.

6. Возможность паяния.

Все эти требования зависят от количества компонентов (металлов), вхо­дящих в сплав. Каждый из них привносит свое качество. Так, например, хром (17—19%) придает сплаву коррозийную стойкость, никель (8—10%) — пластичность, усиливает вязкость, делает его ковким.

Для улучшения литейных свойств добавляют титан (около 1%), кобальт придает стали высокие механические свойства, молибден — мелкокрис­таллическую структуру, что так же усиливает прочность. Марганец пони­жает температуру плавления, способствует удалению газов и сернистых соединений. Нержавеющая сталь

Наиболее распространенной для изготовления штампованных коро­нок и паяных мостовидных протезов является нержавеющая сталь марки IX 18Н9Т: (72% железа, 18% хрома, 9% никеля, 0,1% углерода и 1% титана). Хром обеспечивает коррозионную устойчивость, никель прида­ет сплаву пластичность, делает его ковким, облегчает обработку давле­нием. При термической обработке сплава при температуре 450-850°С могут образоваться химические соединения хрома с углеродом - карбиды хрома, молекулы которых размещаются по границам кристаллических зерен. Это приводит к уменьшению количества свободного хрома в этих зонах, в связи с чем увеличивается возможность возникновения межкри­сталлической коррозии.

Для предупреждения образования карбидов хрома в состав стали вводят титан, вступающий в связь с углеродом. При этом образуются карбиды ти­тана, а образование карбидов хрома прекращается, что предотвращает меж­кристаллическую коррозию стали.

Для улучшения жидкотекучести и жаростойкости стали вводится 2,5% кремния (сплав ЭИ-95).

Механические свойства нержавеющих сталей резко меняются после хо­лодной деформации и наклепа, в результате чего образуются карбиды ме­таллов, в основном хрома.

Для восстановления свойств стали ее необходимо нагреть до 1100° и ох­ладить (отпустить). Эта процедура восстановит пластичность сплава, по­высит его антикоррозийные свойства. Кобальтохромоникелевый сплав (КХС)

Кобальтохромоникелевый сплав применяется для литья конструкций вы­сокой точности (каркасы литых мостовидных протезов, дуговых протезов и литых базисов для съемных протезов). Этот сплав имеет небольшую усадку и обладает хорошими механическими свойствами.

Сплав КХС (Кобальтохромоникелевый сплав) с температурой плавле­ния 1460°С содержит: кобальта 67%, хрома 26%, никеля 6%, молибдена и марганца по 0,5%. Кобальт имеет высокие механические свойства, хром вводится для придания твердости и антикоррозийных свойств, молибден усиливает прочностные свойства, никель повышает вязкость сплава, мар­ганец улучшает жидкотекучесть, понижает температуру плавления. При­месь железа допускается не более 0,5%, она увеличивает усадку при ли­тье и ухудшает физико-химические свойства сплава.

Сплавы титана

Титан плавится при температуре 1690 "С, имеет плотность 4,5 г/см:\ В настоящее время получен титан ВТ 1-0 и ВТ 1-00 (соответственно 99,55 и 99,48% чистоты). Примерно 0,5% составляют примеси железа, азота, водо­рода, которые ухудшают свойства титана. Усадка титановых сплавов при литье составляет 2-3%. Сплавы титана имеют биологическую инертность за счет защитной пленки из оксида титана, высокую удельную прочность, хо­рошую химическую стойкость ко многим агрессивным средам.

Сплавы титана применяются для изготовления имплантатов; для изготов­ления зубных протезов (Пермь, Г.И.Рогожников)

На базе новых металлургических технологий разработаны сплавы нике-лида титана (нитинола), имеющие хорошую коррозионную стойкость, плас­тичность, свойство "памяти". Проволока из нитинола применяется в орто-донтии.Сплавы благородных металлов (золото, золото-платина,

Наши рекомендации