Разрешающая способность и предел разрешения микроскопа.
Предел разрешения – это такое наименьшее расстояние между двумя точками предмета, при котором эти точки различимы, т.е. воспринимаются в микроскопе как две точки.
Разрешающая способность определяется как способность микроскопа давать раздельные изображение мелких деталей рассматриваемого предмета. Она задается формулой:
,
где А – числовая апертура, l – длина волны света; , где n – показатель преломления среды, в которой находится рассматриваемый объект, U – апертурный угол.
Для изучения структуры мельчайших живых существ необходимы микроскопы с большим увеличением и хорошей разрешающей способностью. Оптический микроскоп ограничен увеличением в 2000 раз и имеет разрешающую способность не лучше 250 нм. Эти значения не годятся для исследования мелких деталей клеток.
118. Ультрафиолетовый микроскоп.Один из способов уменьшения
предела разрешения микроскопа - использование света с меньшей длиной волны. В связи с этим применяют ультрафиолетовый микроскоп, в котором микрообъекты исследуются в ультрафиолетовых лучах. Так как глаз непосредственно не воспринимает этого излучения, то употребляются фотопластинки, люминесцентные экраны или электронно-оптические преобразователи. Другим способом уменьшения предела разрешения микроскопа является увеличение показателя преломления среды, в которой находится микроскоп. Для этого его помещают в иммерсионную жидкость, например, кедровое масло.
119. Люминесцентная (флюоресцентная) микроскопия основана на способности некоторых веществ люминесцировать, т. е. светиться при освещении невидимым ультрафиолетовым или синим светом.
Цвет люминесценции смещен в более длинноволновую часть спектра по сравнению с возбуждающим ее светом (правило Стокса). При возбуждении люминесценции синим светом цвет ее может быть от зеленого до красного, если люминесценция возбуждается ультрафиолетовым излучением, то свечение может быть в любой части видимого спектра. Эта особенность люминесценции позволяет, используя специальные светофильтры, поглощающие возбуждающий свет, наблюдать сравнительно слабое люминесцентное свечение.
Поскольку большинство микроорганизмов не обладают собственной люминесценцией, то прибегают к их окрашиванию растворами флюоресцирующих красителей. Этот метод используется для бактериоскопического исследования возбудителей некоторых инфекций: туберкулеза (ауромин), включений в клетках, образуемых некоторыми вирусами и др. Этот же способ может применяться для цитохимического изучения живых и фиксированных микроорганизмов. В реакции иммуннофлюоресценции с помощью антител, меченных флюорохромами, выявляются антигены микроорганизмов или антитела в сыворотке больных
120. Фазово-контрастная микроскопия.При микроскопии неокрашенных микроорганизмов, отличающихся от окружающей среды только по показателю преломления, изменения интенсивности света (амплитуды) не происходит, а изменяется только фаза прошедших световых волн. Поэтому глаз этих изменений заметить не может и наблюдаемые объекты выглядят малоконтрастными, прозрачными. Для наблюдения таких объектов используют фазово-контрастную микроскопию, основанную на превращении невидимых фазовых изменений, вносимых объектом, в амплитудные, различимые глазом.
Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне или светлыми на темном фоне.
Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п.
121. Темнопольная микроскопия.Темнопольная микроскопия основана на способности микроорганизмов сильно рассеивать свет. Для темнопольной микроскопии пользуются обычными объективами и специальными темнопольными конденсорами.
Основная особенность темнопольных конденсоров заключается в том, что центральная часть у них затемнена и прямые лучи от осветителя в объектив микроскопа не попадают. Объект освещается косыми боковыми лучами и в объектив микроскопа попадают только лучи, рассеянные частицами, находящимися в препарате. Темнопольная микроскопия основана на эффекте Тиндаля, известным примером которого служит обнаружение пылинок в воздухе при освещении их узким лучом солнечного света.
При темнопольной микроскопии микроорганизмы выглядят ярко светящимися на черном фоне. При этом способе микроскопии могут быть обнаружены мельчайшие микроорганизмы, размеры которых лежат за пределами разрешающей способности микроскопа. Однако темнопольная микроскопия позволяет увидеть только контуры объекта, но не дает возможности изучить внутреннюю структуру.
122. Тепловое излучениеявляется самым распространенным в природе видом электромагнитного излучения. Оно совершается за счет энергии теплового движения атомов и молекул вещества. Тепловое излучение присуще всем телам при любой температуре, отличной от абсолютного нуля.
Полная лучеиспускательная способность тела Е(её еще называют энергетической светимостью) - это величина энергии, испускаемой с единицы площади поверхности тела за 1с. Измеряется в Дж/м2с.
Полная лучепоглощательная способность тела А(коэффициент поглощения) – это отношение лучистой энергии, поглощенной телом, ко всей падающей на него лучистой энергии; А – безразмерная величина.
123. Абсолютно черное тело.Воображаемое тело, поглощающее при любой температуре всю падающую на него лучистую энергию, называется абсолютно черным.
Закон Кирхгофа. Для всех тел при данной температуре отношение лучеиспускательной способности E к лучепоглощательной способности A есть постоянная величина, равная лучеиспускательной способности абсолютно черного тела eпри той же температуре:
e.
Закон Стефана-Больцмана. Полная лучеиспускательная способность абсолютно черного тела прямо пропорциональна четвертой степени его абсолютной температуры:
e=sT4,
где s– постоянная Стефана-Больцмана.
Закон Вина. Длина волны, соответствующая максимуму излучения абсолютно черного тела, обратно пропорциональна его абсолютной температуре:
lт×T= в,
где в – постоянная Вина.
На законе Вина основана оптическая пирометрия – метод определения температуры раскаленных тел (металла – в плавильной печи, газа – в облаке атомного взрыва, поверхности звезд и т. п.) по спектру их излучения. Именно этим методом была впервые определена температура поверхности Солнца.
124. Инфракрасное излучение.Электромагнитное излучение, занимающее спектральную область между красной границей видимого света (λ= 0,76 мкм) и коротковолновым радиоизлучением (λ = 1 - 2 мм) называют инфракрасным (ИК). Нагретые твердые и жидкие тела испускают непрерывный инфракрасный спектр.
Лечебное применение инфракрасного излучения основано на его тепловом воздействии. Для лечения используют специальные лампы.
Инфракрасное излучение проникает в тело на глубину около 20 мм, поэтому в большей степени прогреваются поверхностные слои. Терапевтический эффект обусловлен возникающим температурным градиентом, что активизирует деятельность терморегулирующей системы. Усиление кровоснабжения облученного места приводит к благоприятным лечебным последствиям.
125. Ультрафиолетовое излучение.Электромагнитное излучение,
занимающее спектральную область между фиолетовой границей видимого света (λ = 400 нм) и длинноволновой частью рентгеновского излучения (λ = 10 нм), называют ультрафиолетовым(УФ).
Накаленные твердые тела при высокой температуре излучают
заметную долю ультрафиолетового излучения. Однако максимум
спектральной плотности энергетической светимости в соответствии с законом Вина приходится на 7000 К. Практически это означает, что в обычных условиях тепловое излучение серых тел не может служить эффективным источником УФ излучения. Наиболее мощным источником УФ излучения является Солнце, 9 % излучения которого на границе земной атмосферы составляет ультрафиолетовое.
УФ излучение необходимо для работы УФ микроскопов, люминесцентных микроскопов, для люминесцентного анализа. Главное применение УФ излучения в медицине связано с его специфическим биологическим воздействием, которое обусловлено фотохимическими процессами.
126. Термография– это регистрация излучения различных участков
поверхности тела с целью диагностической интерпретации. Определение температуры осуществляется двумя способами. В одном случае используются жидкокристаллические индикаторы, оптические свойства которых очень чувствительны к небольшим изменениям температуры.
Помещая эти индикаторы на тело больного, можно визуально по изменению их цвета определить местное различие температуры.
Другой метод основан на использовании тепловизоров, в которых используются чувствительные приемники инфракрасного излучения, например, фотосопротивления.
127. Физиологические основы термографии. Физиологические процессы, происходящие в организме человека, сопровождаются выделением теплоты, которая переносится циркулирующей кровью и лимфой. Источник тепла - биохимические процессы, происходящие в живом организме. Выделяемое тепло разносится кровью по всему организму. Обладая высокой теплоемкостью и теплопроводностью, циркулирующая кровь способна осуществлять интенсивный теплообмен между центральными и периферическими областями организма. Температура крови, проходящей по кожным сосудам, снижается на 2-3°.
В основе термографии лежит явление увеличения интенсивности инфракрасного излучения над патологическими очагами (в связи с усилением в них кровоснабжения и метаболических процессов) или уменьшение его интенсивности в областях с уменьшенным региональным кровотоком и сопутствующими изменениями в тканях и органах. Обычно это выражается появлением "горячей зоны". Выделяют два основных вида термографии: телетермография и контактная холестерическая термография.
128. Телетермография основана на преобразовании инфракрасного излучения тела человека в электрический сигнал, который визуализируется на экране тепловизора. В качестве приемных устройств инфракрасного излучения в тепловизорах используют чувствительные фотосопротивления.
Тепловизор работает следующим образом. Инфракрасное излучение фокусируется системой линз, после чего попадает на фотоприемник, работающий при охлаждении его до –196°С. Сигнал с фотоприемника усиливается и подвергается цифровой обработке с последующей передачей полученной информации на экран цветного монитора.
129. Контактная жидкокристаллическая термография опирается на оптические свойства анизотропных холестерических жидких кристаллов, которые проявляются изменением окраски в радужные цвета при нанесении их на термоизлучающие поверхности. Наиболее холодным участкам соответствует красный цвет, наиболее горячим - синий.
Жидкокристаллическая контактная пластинчатая термография в настоящее время широко и успешно применяется в различных областях медицины, однако значительно большее применение нашли дистанционные методы регистрации инфракрасного излучения тела человека.
130. Клинические применения термографии.Термографическая диагностика не оказывает никакого внешнего воздействия или неудобства для пациента и позволяет "увидеть" аномалии тепловой картины на поверхности кожи пациента, которые характерные для многих заболеваний и физических расстройств.
Термография, являясь физиологичным, безвредным, неинвазивным методом диагностики, находит свое применение в практической медицине для диагностики широкого круга патологий: заболеваний молочных желез, позвоночника, суставов, щитовидной железы, ЛОР органов, сосудов, печени, желчного пузыря, кишечника, желудка, поджелудочной железы, почек, мочевого пузыря, предстательной железы. Термография позволяет зафиксировать изменения в самом начале развития патологического процесса, до появления структурных изменений в тканях.
131. Резерфордовская (планетарная) модель атома.Согласно этой модели весь положительный заряд и почти вся масса (более 99,94%) атома сосредоточены в атомном ядре, размер которого ничтожно мал (порядка 10-13 см) по сравнению с размером атома (10-8 см). Вокруг ядра по замкнутым (эллиптическим) орбитам движутся электроны, образуя электронную оболочку атома. Заряд ядра равен по абсолютной величине суммарному заряду электронов.
Недостатки резерфордовской модели.
а) в резерфордовской модели атом является неустойчивым
образованием, тогда как опыт свидетельствует об обратном;
б) спектр излучения атома по Резерфорду является непрерывным, тогда как опыт говорит о дискретном характере излучения.
132. Квантовая теория строения атома по Бору.Исходя из представлений о дискретности энергетических состояний атома, Бор усовершенствовал атомную модель Резерфорда, создав квантовую теорию строения атома. В ее основе лежат три постулата.
- Электроны в атоме могут двигаться не по любым орбитам, а только по орбитам вполне определенного радиуса. На этих орбитах, называемых стационарными, момент количества движения электрона определяется выражением:
mvr=n ,
где m – масса электрона, v – его скорость, r – радиус электронной орбиты, n – целое число, называемое квантовым (n=1,2,3, …).
- Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии.
- Переход электрона с одной стационарной орбиты на другую
сопровождается излучением (или поглощением) кванта энергии.
Величина hn этого кванта равна разности энергий W1 – W2 стационарных состояний атома до и после излучения (поглощения):
hn=W1 – W2.
Это соотношение называют условием частот.
133. Виды спектров.Различают три основных вида спектров: сплошные, линейчатые и полосатые.
Линейчатые спектры излучаются отдельными возбужденными
атомами. Излучение обусловлено переходами связанных электронов на более низкие энергетические уровни.
Полосатые спектры излучаются отдельными возбужденными
молекулами. Излучение вызвано как электронными переходами в атомах, так и колебательными движениями самих атомов в молекуле.
Сплошные спектры излучаются совокупностями многих взаимодействующих между собой молекулярных и атомных ионов.
Основную роль в излучении играет хаотическое движение этих частиц, обусловленное высокой температурой.
134. Понятие о спектральном анализе. Каждый химический элемент
испускает (и поглощает) свет с вполне определенными, присущими только этому элементу длинами волн. Линейчатые спектры элементов получают путем фотографирования в спектрографах, в которых разложение света осуществляется с помощью дифракционной решетки. Линейчатый спектр элемента – это его своеобразный “отпечаток пальца”, который позволяет безошибочно идентифицировать этот элемент на основе длин волн излучаемого (или поглощаемого света). Спектрографические исследования являются одним из наиболее мощных имеющихся в нашем распоряжении методов химического анализа.
Качественный спектральный анализ – это сравнение полученных спектров с табличными для определения состава вещества.
Количественный спектральный анализ проводится путем фотометрирования (определения интенсивности) спектральных линий: яркость линий пропорциональна количеству данного элемента.
Градуировка спектроскопа. Для того чтобы с помощью спектроскопа можно было определять длины волн исследуемого спектра, спектроскоп необходимо проградуировать, т.е. установить зависимость между длинами волн спектральных линий и делениями шкалы спектроскопа, на которых они видны.
135. Основные характеристики и области применения спектрального анализа.С помощью спектрального анализа можно определять как атомный, так и молекулярный состав вещества. Спектральный анализ позволяет проводить качественное открытие отдельных компонентов анализируемой пробы и количественное определение их концентрации. Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально.
Чувствительность спектрального анализа, как правило, очень высока. Прямым анализом достигается чувствительность 10-3 - 10-6 %. Скорость спектрального анализа обычно значительно превышает скорость выполнения анализа другими методами.
136. Спектральный анализ в биологии. Спектроскопический метод измерения оптической активности веществ широко применяется для определения структуры биологических объектов. При изучении биологических молекул измеряются их спектры поглощения и флуоресценция. Флуоресцирующие при лазерном возбуждении красители используются для определения водородного показателя и ионных сил в клетках, а также для исследования специфических участков в белках. С помощью резонансного комбинационного рассеяния зондируется структура клеток и определяется конформация молекул белков и ДНК. Важную роль сыграла спектроскопия при изучении фотосинтеза и биохимии зрения.
137. Спектральный анализ в медицине.В организме человека присутствует более восьмидесяти химических элементов. Их взаимодействие и взаимовлияние обеспечивает процессы роста, развития, пищеварения, дыхания, иммунитета, кроветворения, памяти, оплодотворения и т.д.
Для диагностики микро- и макроэлементов, а также их количественного дисбаланса волосы и ногти являются наиболее благодатным материалом. Каждый волос хранит интегральную информацию о минеральном обмене всего организма за весь период времени своего роста. Спектральный анализ дает полные сведения о минеральном балансе за продолжительный период времени. Некоторые токсичные вещества можно обнаружить только этим способом. Для сравнения: обычные методики позволяют определять по анализу крови соотношение менее десяти микроэлементов на момент тестирования.
Результаты спектрального анализа помогают врачу в диагностике и поисках причины заболеваний, выявлении скрытых заболеваний и предрасположенности к ним; позволяют более точно назначать лекарственные препараты и разрабатывать индивидуальные схемы восстановления минерального баланса.
Трудно переоценить значение спектроскопических методов в фармакологии и токсикологии. В частности, они позволяют проводить анализ проб фармакологических препаратов при их валидации, а также определении фальсифицированных лекарственных средств. В токсикологии ультрафиолетовая и инфракрасная спектроскопии позволили проводить идентификацию многих алкалоидов из экстрактов Стаса.
138. Люминесценцией называется избыточное над тепловым излучение тела при данной температуре, имеющее длительность, значительно превышающую период излучаемых световых волн.
Фотолюминесценция. Люминесценция под воздействием фотонов называется фотолюминесценцией.
Хемилюминесценция. Люминесценция, сопровождающая химические реакции, называется хемилюминесценцией.
139. Люминесцентный анализоснован на наблюдении люминесценции объектов с целью их исследования; используется для обнаружения начальной стадии порчи продуктов, сортировки фармакологических препаратов и диагностики некоторых заболеваний.
140. Фотоэлектрическим эффектом называется явление вырывания
электронов из вещества под действием падающего на него света.
Привнешнем фотоэффекте электрон покидает поверхность вещества.
При внутреннем фотоэффекте электрон освобождается от связей с атомом, но остается внутри вещества.
Уравнение Эйнштейна:
hn = A + ,
где hn – энергия фотона, n – его частота, А – работа выхода электрона, – кинетическая энергия вылетевшего электрона, v – его скорость.
Законы фотоэффекта:
- Число фотоэлектронов, вырываемых с поверхности металла за единицу времени, пропорционально световому потоку, падающему на металл.
- Максимальная начальная кинетическая энергия фотоэлектронов
определяется частотой падающего света и не зависит от его интенсивности.
- Для каждого металла существует красная граница фотоэффекта, т.е. максимальная длина волны l0, при которой еще возможен фотоэффект.
Внешний фотоэффект находит применение в фотоэлектронных умножителях (ФЭУ) и электронно-оптических преобразователях (ЭОП). ФЭУ применяются для измерения световых потоков малой интенсивности. С их помощью можно определить слабую биолюминесценцию. ЭОП применяют в медицине для усиления яркости рентгеновского изображения; в термографии – для преобразования инфракрасного излучения организма в видимое. Кроме того, фотоэлементы применяются в метро при прохождении турникета, в современных гостиницах, аэропортах и т.д. для автоматического открывания и закрывания дверей, для автоматического включения и выключения освещения улиц, для определения освещенности (люксметр) и пр.
141. Рентгеновское излучение–это электромагнитное излучение с длиной волны от 0,01 до 0,000001 мкм. Оно вызывает свечение экрана, покрытого люминофором, и почернение фотоэмульсии, благодаря чему его можно использовать для фотографирования.
Рентгеновские лучи возникают при резкой остановке электронов при их ударе об анод в рентгеновской трубке. Предварительно электроны, эмиттируемые катодом, разгоняются ускоряющей разностью потенциалов до скоростей порядка 100000 км/с. Это излучение, называемое тормозным, имеет сплошной спектр.
Интенсивность рентгеновского излучения определяется эмпирической формулой:
Φ=kIU2Z,
где I – сила тока в трубке, U – напряжение, Z – порядковый номер атома вещества антикатода, k – const.
Рентгеновское излучение, возникающее в результате торможения электронов, называется «тормозным».
Коротковолновое рентгеновское излучение обычно обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое – мягким.
При больших напряжениях в рентгеновской трубке наряду с
рентгеновским излучением, имеющим сплошной спектр, возникает рентгеновское излучение, имеющее линейчатый спектр; последний налагается на сплошной спектр. Это излучение называется характеристическим, так как каждое вещество имеет собственный, характерный для него линейчатый рентгеновский спектр (сплошной спектр от вещества анода и определяется только напряжением на рентгеновской трубке).
142. Свойства рентгеновского излучения.Рентгеновские лучи обладают всеми свойствами, которые характеризуют световые лучи:
1) не отклоняются в электрическом и магнитном полях и, следовательно, не несут электрического заряда;
2) обладают фотографическим действием;
3) вызывают ионизацию газа;
4) способны вызывать люминесценцию;
5) могут преломляться, отражаться, обладают поляризацией и дают явление интерференции и дифракции.
143. Закон Мозли. Так как атомы различных веществ имеют различные энергетические уровни в зависимости от их строения, то и спектры характеристического излучения зависят от строения атомов вещества анода. Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли:
=А(Z-B),
где n – частота спектральной линии, Z – порядковый номер испускающего элемента, А и В – постоянные.
144. Взаимодействие рентгеновского излучения с веществом.В зависимости от соотношение энергии фотона e и энергии ионизации А имеют место три главных процесса.
Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: hn<А. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяются, то когерентное рассеяние само по себе не вызывает биологического действия.
Некогерентное рассеяние (эффект Комптона). В 1922 году А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление – эффектом Комптона.
Фотоэффект.При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.
Ионизирующее действие рентгеновского излучения проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.
145. Рентгенолюминесценциейназывают свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку, что позволяет фиксировать эти лучи.
146. Поглощение рентгеновского излученияописывается законом Бугера:
F = F0е-mx,
где m - линейный коэффициент ослабления,
x – толщина слоя вещества,
F0 – интенсивность падающего излучения,
F - интенсивность прошедшего излучения.
147. Воздействие рентгеновского излучения на организм. Хотя лучевые нагрузки при рентгенологических исследованиях невелики, они могут приводить к изменениям в хромосомном аппарате клеток – радиационным мутациям. Поэтому рентгеновские исследования должны регламентироваться.
148. Рентгеновская диагностика. Рентгеновская диагностика основана на избирательном поглощении тканями и органами рентгеновского излучения.
149. Рентгеноскопия. При рентгеноскопии изображение просвечиваемого объекта получают на флюороскопическом экране. Методика проста и экономична, позволяет наблюдать за движением органов и за перемещением в них контрастного вещества. Однако она обладает и недостатками: после неё не остается документа, который мог бы обсуждаться или рассматриваться в дальнейшем. На экране плохо различимы мелкие детали изображения. Рентгеноскопия сопряжена с гораздо большей лучевой нагрузкой на больного и врача, чем рентгенография.
150. Рентгенография.При рентгенографии пучок рентгеновских лучей направляется на исследуемую часть тела. Излучение, прошедшее через тело человека, попадает на пленку, на которой после её обработки получается изображение.
151. Электрорентгенография.В ней пучок рентгеновского излучения, прошедший через больного, попадает на заряженную статическим электричеством селеновую пластинку. При этом пластина изменяет свой электрический потенциал, на ней возникает скрытое изображение из электрических зарядов.
Далее пластинку опыляют черным порошком, который, прилипая к пластине, воссоздает на ней изображение. Затем изображение переносится на бумагу.
Главное достоинство метода – возможность быстро получить большое число качественных снимков без расхода рентгеновской пленки, содержащей дорогостоящие соединения серебра, и без “мокрого” фотопроцесса.
152. Флюорография.Её принцип состоит в фотографировании рентгеновского изображения с экрана на малоформатную роликовую пленку. Применяется при массовых обследованиях населения. Преимущества метода – быстрота, экономичность.
153. Искусственное контрастирование органов.Метод основан на
введении в организм безвредных веществ, которые поглощают
рентгеновское излучение гораздо сильнее или, наоборот, гораздо слабее, чем исследуемый орган. Например, больному рекомендуется принять водную взвесь сульфата бария. При этом на снимке появляется тень контрастной массы, находящейся в полости желудка. По положению, форме, величине и очертаниям тени можно судить о положении желудка, форме и величине его полости.
Йод используется для контрастирования щитовидной железы. Из газов для этой цели применяют кислород, закись азота, углекислый газ. В кровяное русло можно вводить только закись азота и углекислый газ, так как они в противоположность кислороду не вызывают газовой эмболии.
154. Усилители рентгеновских изображений.Яркость свечения, преобразующего рентгеновское излучение в видимый свет флюоресцентного экрана, которым пользуется рентгенолог, производя рентгеноскопию, составляет сотые доли кандел на квадратный метр (кандел - свеча). Это примерно соответствует яркости лунного света в безоблачную ночь. При подобной освещенности человеческий глаз работает в режиме сумеречного зрения, при котором чрезвычайно плохо различаются мелкие детали и слабые перепады контраста.
Увеличить яркость экрана нельзя из-за пропорционального увеличения дозы облучения пациента, которая и так не безвредна.
Возможность устранить это препятствие дают усилители рентгеновского изображения (УРИ), способные усиливать яркость изображений в тысячи раз за счет многократного ускорения электронов с помощью внешнего электрического поля. УРИ, помимо увеличения яркости, позволяют существенно сократить дозу облучения при исследовании.
155. Ангиография – метод контрастного исследования кровеносной
системы, в котором под визуальным рентгеновским контролем с помощью УРИ и телевидения рентгенолог вводит в вену тонкую эластичную трубку - катетер и направляет его вместе с током кровипрактически в любую область тела, даже в сердце. Затем в нужный момент по катетеру вводится рентгеноконтрастная жидкость и одновременно делается серия снимков, с большой скоростью следующих друг за другом.
156. Цифровой метод обработки информации.Электрические сигналы представляют собой наиболее удобную форму для последующей обработки изображения. Иногда на изображении выгодно подчеркнуть линию, выделить контур, иногда высветить текстуру. Обработка может осуществляться как электронными аналоговыми, так и цифровыми методами. Для целей цифровой обработки аналоговые сигналы превращаются в дискретную форму с помощью аналого-цифровых преобразователей АЦП и в таком виде поступают на компьютер.
Полученное на флюороскопическом экране световое изображение усиливается электронно-оптическим преобразователем (ЭОП) и поступает через оптическую систему на вход телевизионной трубки ТТ, превращаясь в последовательность электрических сигналов. С помощью АЦП производится дискретизация и квантование, а далее запись в оперативную цифровую память – ОЗУ и обработка сигналов изображения по заданным программам. Преобразованное изображение вновь превращается в аналоговую форму с помощью цифро-аналогового преобразователя ЦАП и выводится на экран видеоконтрольного устройства ВКУ полутонового дисплея.
157. Цветовое кодирование черно-белых изображений.Большинство интроскопических изображений монохромно, то есть, лишено цвета. Но ведь нормальное зрение человека - цветное. Чтобы полностью использовать способности глаза, имеет смысл в ряде случаев искусственно раскрашивать наши интроскопические изображения на последнем этапе их преобразования.
При восприятии глазом цветного изображения появляются
дополнительные признаки изображения, облегчающие анализ. Это
цветовой тон, насыщенность цвета, цветной контраст. В цвете во много раз повышается различаемость деталей и контрастная чувствительность глаза.
158. Рентгеновская терапия.Рентгеновское излучениеприменяется для лучевой терапии при лечении ряда заболеваний. Показания и тактика рентгенотерапии во многом аналогичны методам гамма-терапии.
159. Томография.На изображение органа или патологического образования, интересующего врача, наслаиваются тени соседних органов и тканей, расположенных по ходу рентгеновского пучка.
Суть томографии заключается в том, что в процессе съемки
рентгеновская трубка перемещается относительно больного, давая резкое изображения только тех деталей, которые лежат на заданной глубине. Таким образом, томография – это послойное рентгеновское исследование.
160. Лазерное излучение–это когерентное одинаково направленное
излучение множества атомов, создающее узкий пучок монохроматического света.
Чтобы лазер начал действовать, необходимо перевести большое число атомов его рабочего вещества в возбужденное (метастабильное) состояние. Для этого рабочему веществу передается электромагнитная энергия от специального источника (метод накачки). После этого в рабочем веществе начнутся почти одновременные вынужденные переходы всех возбужденных атомов в нормальное состояние с излучением мощного пучка фотонов.
161. Применение лазера в медицине.Высокоэнергетические лазеры
применяются в качестве лазерного скальпеля в онкологии. При этом достигается рациональное иссечение опухоли с минимальным повреждением окружающих тканей, причем операцию можно выполнять вблизи структур мозга с большой функциональной значимостью.
Кровопотеря при применении луча лазера гораздо меньше, рана полностью стерилизуется, а отек в послеоперационном периоде минимальный.
Особенно эффективен лазер в микрохирургии глаза. Он позволяет проводить лечение глаукомы посредством “прокалывания” его лучом микроскопических отверстий для оттока внутриглазной жидкости. Лазером осуществляется безоперационное лечение отслойки сетчатки.
Низкоэнергетическое лазерное излучение оказывает противовоспалительное, аналгезирующее действие, изменяет тонус сосудов, улучшает обменные процессы и т.д.; оно применяется в специальной терапии в различных областях медицины.
162. Воздействие лазера на организм. Воздействие лазерного излучения на организм во многом схоже с воздействием электромагнитного излучения видимого и инфракрасного диапазонов. На молекулярном уровне такое воздействие приводит к изменению энергетических уровней молекул живого вещества, их стереохимической перестройке, коагуляции белковых структур. Физиологические эффекты лазерного воздействия связаны с фотодинамическим эффектом фотореактивации, эффектом стимуляции или угнетения биопроцессов, изменением функционального состояния как отдельных систем, так и организма в целом.
163. Использование лазеров в медико-биологических исследованиях. Одним из основных направлений лазерной диагностики является спектроскопия конденсированных сред, которая позволяет проводить анализ биологических тканей и их визуализацию на клеточном, субклеточном и молекулярном уровнях.
Характерные примеры - исследование спек