Г л а в а 10. патологическая физиология тепловой регуляции
Терморегуляция обеспечивает постоянство температуры тела у животных при оптимальной для каждого вида температуре среды, соответствующей минимальным энергетическим тратам. Нормотермия (эутермия) поддерживается физиологическими механизмами, включающими афферентные, центральные и эфферентные звенья нервнорефлекторной регуляции. Афферентное звено представлено терморецепторами — нервными окончаниями, заложенными в коже, слизистых оболочках, структурах мозга, внутренних органах. Холодовые и тепловые рецепторы воспринимают изменения температуры внешней среды, уровень теплосодержания в организме и передают соответствующую информацию центральным звеньям терморегуляции.
Центральным нервным образованием, осуществляющим контроль за отклонениями температуры тела или его отдельных частей от «установочной точки» (set point), является медиальная область переднего гипоталамуса, функционирующая в сочетании с другими отделами центральной нервной системы: передними и задними отделами гипоталамуса, сенсомоторными областями коры головного мозга, продолговатым и спинным мозгом. Отклонение температуры от «установочной точки», определяемой нейронами термочувствительных областей мозга, приводит к появлению эфферентных сигналов, управляющих механизмами химической и физической регуляции тепла, поведенческими реакциями (термопреферендум).
Химическая регуляция определяется уровнем обменных процессов, протекающих во внутренних органах и поперечнополосатых мышцах. Физическая терморегуляция обеспечивает регулируемую отдачу тепла во внешнюю среду за счет интенсивности кожного кровотока, потоотделения, дыхания, состояния волосяного покрова, других механизмов, присущих тому или иному виду животных. В поддержании нормотермии имеют значение и термоповедение, предусматривающее укрытие животных в тени от прямых солнечных лучей, увлажнение кожи, линька и др.
Уравновешенность процессов теплообразования и теплоотдачи, протекающих на уровне, свойственном животному каждого вида, определяет необходимое теплосодержание в их теле.
Под влиянием экстремальных внешних или внутренних условий возможно патологическое уменьшение (гипотермия) или повышение (гипертермия) температуры тела. Интегральным показателем теплосодержания у животных принято считать ректальную температуру.
ГИПОТЕРМИЯ
Гипотермия (от греч. hypo — понижение, therme — теплота) — стойкое снижение температуры тела вследствие уменьшения теплосодержания в организме. Теплопотери превалируют над теплопродукцией. Причинами ее могут быть внешнее переохлаждение, наркоз (рис. 10), зимняя спячка, поражения центральной нервной системы, шоковые состояния, значительные кровопотери, тяжелые расстройства обмена веществ.
Рис. 10. Медикаментозная гипотермия, индуцированная внутривенной инъекцией аминазина кролику. Читать справа налево.
Значения кривых (сверху вниз) на термограмме: 1 — контрольная линия; 2 — температура печени; 3— ректальная температура; 4 — температура кожи; 5 — контрольная линия.
Стрелкой указано время инъекции. Точки нанесены с интервалом 2 мин
Гипотермия первичного происхождения как следствие воздействия на организм сельскохозяйственных животных низких температур представляет наибольший интерес. Переохлаждению способствуют увлажнение волосяного покрова, ветер, усиливающий конвективные потери тепла, влажный воздух, недоедание. Индивидуальное ослабление организма также может благоприятствовать чрезмерной отдаче тепла. Сравнительно легко переохлаждаются новорожденные из-за несовершенства терморегуляционных механизмов, а также старые животные. Алиментарное истощение, кровопотеря, мышечное переутомление, снижение обменных процессов при некоторых болезнях способствуют неблагоприятному действию холода.
Компенсаторная стадия характеризуется преимущественно рефлекторными приспособительными реакциями. Внешнее охлаждение ведет к чрезмерным теплопотерям, которые компенсируются терморегуляторными механизмами. Снижение внешней температуры воздействует прежде всего на рецепторный аппарат, расположенный в поверхностных слоях кожных покровов. Возникающая патологическая импульсация передается в центральную нервную систему и распространяется по всем отделам головного мозга, в том числе в центр терморегуляции — гипоталамус. Формируемая там эфферентная импульсация направляется к органам-исполнителям, в том числе эндокринным железам — гипофизу, надпочечникам, щитовидной, поджелудочной железе и др. Развивается характерная стресс-реакция с выбросом в кровь адаптивных гормонов.
Особое значение в противостоянии организма холоду имеет активизация симпатической нервной системы. Под влиянием катехоламинов происходят мобилизация и утилизация субстратов окисления, стимулируется гипоталамо-гипофизарная система. Усиливается теплопродукция, ограничивается отдача тепла в атмосферу.
Уменьшение теплоотдачи у разных животных связано с видовыми особенностями терморегуляторных механизмов, но в общих чертах оно сводится к снижению кожного кровотока, уменьшению площади охлаждаемой поверхности тела, повышению теплоизолирующих свойств волосяного покрова, замедлению дыхания.
Наряду с ограничением теплопотерь эта стадия характеризуется рефлекторно регулируемым увеличением производства тепла. Теплопродукция слагается из сократительного и несократительного компонентов. Сократительный компонент связывают с появлением мышечной дрожи у охлаждаемых животных, а несократительный — со стимуляцией термогенеза в немышечных органах и тканях, а частично и в мышцах. Показано, что еще до появления дрожи и двигательных реакций в мышцах регистрируется слабая сократительная активность, нарастающая по мере охлаждения животных. Проявляется терморегуляторный тонус мышц. Предполагают, что несократительный термогенез обеспечивается скелетными мышцами примерно на 50 %, печенью на 25, пищеварительным трактом на 10, бурой жировой тканью на 10 %.
Терморегуляторное повышение метаболизма сопровождается холодовой мышечной дрожью. Большая масса, способность быстро и во много раз увеличивать теплопродукцию делают мышцы главным эффектором в рефлекторной реакции на холод. В мышцах увеличивается объемный кровоток, повышается концентрация катехоламинов, кортикостероидов, неэстерифицированных жирных кислот. Стимулируются гликогенолиз, липолиз, окисление жирных кислот, аэробный гликолиз, клеточное дыхание, разобщение окислительного фосфорилирования, гидролиз АТФ.
Специфика изменений, связанных с воздействием холода, присуща и бурой жировой ткани (БЖТ). Эта ткань характеризуется чрезвычайно высокой терморегуляторной активностью окислительных процессов. Норадреналин, выделяемый симпатическими окончаниями, непосредственно воздействует на адренэргические структуры БЖТ, стимулирует липолиз и окисление жирных кислот—пальмитиновой, олеиновой, линолевой. Окисление здесь идет преимущественно по несопряженному пути, что и обеспечивает высокую термогенность бурого жира. Бурый жир новорожденных — единственное вещество, благодаря которому осуществляется теплопродукция; рудименты бурого жира у взрослых играют, вероятно, роль локальных согревательных элементов.
Большую роль в реактивном повышении продукции тепла отводят печени, легким, кишечнику, сердцу. Однако есть мнение и о том, что внутренние органы своими специфическими функциями обеспечивают основную эффекторную термогенную систему — скелетные мышцы.
При непрекращающемся действии холода компенсаторные возможности организма исчерпываются, теплосодержание уменьшается, температура тела падает, наступает стадия декомпенсации. Возникающее состояние необычно, оно приводит к нарушению жизненно важных функций, что связано с обеднением углеводами, липидами, белками клеток центральной нервной системы, печени, сердца, мышц, других органов, ограничением их функциональной активности. Тормозится функция коры головного мозга. Угнетаются подкорковые нервные образования. Чувствительность и двигательная активность подавлены. Дрожь прекращается. Ослабевают сила и частота сердечных сокращений, снижается артериальное давление, возникают гипоксемия и гипоксия. Ингибирована активность окислительных ферментов. Дыхание становится редким, поверхностным, даже периодическим. Потребление кислорода ограничено.
Падение температуры внутренних органов, сопряженное с возможностью последующего восстановления жизнедеятельности, называют биологическим нулем. Для человека он равен 24—26 °С, для животных — 13—20 0С. Следует отметить, что функции сердца, печени, почек, легких, кишечника угнетаются при неоднозначных температурах этих органов. Отсюда дискоординация физиологических функций, распространяющаяся на все стороны обмена веществ и жизнедеятельности организма.
Смерть от холода развивается более медленно, чем от других причин. Продолжительность клинической смерти может составлять от 10—15 до 60 мин. Причина смерти — торможение, развивающееся в дыхательном центре.
У сельскохозяйственных животных чувствительность к переохлаждению неодинакова. Значительной устойчивостью к низким температурам среды в силу специфики рубцового пищеварения обладают жвачные животные. В организме хорошо обеспеченной кормом коровы, овцы всегда имеется избыток тепла. Однако новорожденные телята, ягнята до начала функционирования рубца, заселения его микрофлорой весьма чувствительны к низкой температуре среды обитания.
Устойчивость свиней к холоду также связывают с возрастом. У поросят сразу после рождения температура тела падает на 2—3 °С с последующим восстановлением. При оптимальном микроклимате нормализация наступает через сутки, а на холоде возврат к норме замедляется или приостанавливается. С возрастом, накапливая запасы подкожного жира, свиньи становятся малочувствительными к холоду.
Лошади, находящиеся в неблагоприятных условиях среды (дождь, ветер, низкая температура, длительное содержание на привязи вне помещения в холодную погоду), нередко страдают от переохлаждения. У них отмечают ту или иную степень угнетения, отказ от корма, понижение температуры тела, замедление дыхания, ослабление сердечной деятельности, падение артериального давления.
Длительное охлаждение сельскохозяйственных животных снижает их резистентность и может осложняться простудными заболеваниями — воспалительным процессом верхних дыхательных путей, бронхитом, пневмонией, респираторными заболеваниями вирусного происхождения, гломерулонефритом, ревматическим пододерматитом. В генезе болезней простудного происхождения большое значение имеют патологические рефлексы с охлаждаемых частей тела и аллергические реакции.
Гибернация — искусственно создаваемая и управляемая гипотермия. При определенных условиях возникает необходимость снижения температуры тела животных и человека до заданных пределов. С этой целью используют фармакологические препараты и физическое охлаждение. Снижением температуры тела достигаются ингибиция окислительных процессов, угнетение нервной деятельности, блокирование проведения нервных импульсов, ограничение реагирования на различные, в том числе болезнетворные, раздражители. Гибернацию используют, например для проведения сложных операций, предупреждения тяжелых последствий шоковых состояний различного происхождения.
ГИПЕРТЕРМИЯ
Гипертермия(от греч. hyper — повышение, therme — теплота) — пассивное повышение температуры тела вследствие внешнего перегревания. Гипертермия возникает, когда животные .долгое время находятся в среде с высокой температурой. Перегреванию способствуют длительная инсоляция, недостаточность движения воздуха, его высокая влажность, интенсивная мышечная нагрузка, скученность животных, особенно при транспортировке и перегонах, ограничение приема воды.
Повышение температуры среды обитания рефлекторно стимулирует у животных теплоотдачу и ограничивает продукцию тепла.
Интенсификация рассеивания тепла осуществляется путем расширения кожных сосудов, что обеспечивает увеличение теплопроводности периферических тканей в 5—6 раз. Возрастает интенсивность теплоизлучения, конвекционных теплопотерь, испарения влаги. Стимулируются потоотделение, перспирация, а также продукция водных паров за счет значительного возрастания частоты дыхания.
У животных, особенно со слаборазвитыми потовыми железами, развивается одышка, дыхание становится частым, поверхностным. У собак и овец при перегревании частота дыхания может увеличиваться в 10—15 раз, у лошадей — в 2,5—4 раза, у крупного рогатого скота — в 4—6 раз, у свиней — в 5—7 раз; у гусей, уток, кур тепловая одышка также весьма велика. У голубей при перегревании зарегистрировано учащение дыхания с 30 до 612 циклов в 1 мин.
Оказалось, что тепловая одышка благодаря наличию противоточной системы способствует охлаждению крови наружных сонных артерий. Эти артерии, проходя через кавернозный синус, распадаются на множество мелких сосудов. Кавернозный же синус наполняется венозной кровью, оттекающей от слизистых оболочек носовой полости, где она охлаждается при интенсивном испарении влаги. Такой теплообменник позволяет поддерживать температуру мозга — органа, наиболее чувствительного к перегреву, на более низком уровне, чем температура тела. У антилоп, например, температура мозга может быть ниже температуры тела на 2— 3 0С, что и сохраняет им жизнь.
При умеренном перегревании частично тормозятся процессы теплорегуляции, угнетен липолиз, снижается тканевое дыхание. Однако у жвачных животных возможность снижения обмена веществ ограничена, так как пищеварение у них сопряжено с выделением большого количества энергии. При внешнем перегревании жвачные меньше потребляют корма, что ограничивает бродильные процессы в рубце, уменьшает специфическое динамическое действие корма и эндогенное образование тепла. У высокопродуктивных коров резко снижается молокообразование.
Недостаточность механизмов компенсации при сохраняющейся высокой внешней температуре ведет к быстрому нарастанию теплосодержания в организме, повышению температуры тела. Одновременно возрастает скорость химических реакций. Вместе с тем активность ферментных систем не является линейной функцией температуры. Каждый специфический катализатор характеризуется определенной величиной энергии активации. Поэтому в организме нарастает избыточное содержание продуктов метаболизма, особенно остаточного азота и мочевины крови. Кровь сгущается, она становится вязкой, возрастает нагрузка на сердце, возникают гипоксия, ацидоз. Затруднено отведение продуктов обмена от клеток. Это ведет к общему возбуждению, утомляемости, тахикардии, полипноэ.
Продолжающееся перегревание сопровождается дальнейшим углублением тяжелого состояния животных. Температура тела достигает своего максимально переносимого уровня — 44—45 °С. У животных нарушается координация движений. Лошади, например, не слушают повода, спотыкаются, теряют сознание, падают; у них возникают судороги, а затем наступает смерть. Аналогичные явления могут быть у коров, быков, рабочих волов, свиней, пушных зверей клеточного содержания, кур, уток. Особенно легко перегреваются новорожденные.
В тех случаях, когда перегревание животных наступает очень быстро, в течение нескольких часов, говорят о тепловом ударе.
Солнечный удар — следствие интенсивного воздействия прямых солнечных лучей на головной мозг. Сочетанное влияние на мозговые структуры инфракрасных и ультрафиолетовых лучей сопровождается артериальной гиперемией, разрывом сосудов, микро- и макрокровоизлияниями в мозговую ткань. У крупных сельскохозяйственных животных количество излившейся в мозг крови может достигать 0,5 л. Резкое повышение внутричерепного давления сопровождается параличом жизненно важных центров, нарушением функции сердечно-сосудистой системы, дыхания, органов движения, в последующем наступает смерть.
Солнечному удару подвержены рабочие лошади, волы во время тяжелой мышечной работы, коровы при длительных перегонах, лисицы и норки, находящиеся в незатененных клетках, утки. Лошади в силу особенностей анатомического строения черепа наиболее предрасположены к солнечному удару. В особенно жаркие дни могут быть случаи их молниеносной смерти. Неадаптированные сельскохозяйственные животные особенно чувствительны к повышенной инсоляции.
Помимо высокой внешней температуры и инсоляции гипертермия может быть индуцирована другими этиологическими факторами. Механические повреждения мозга, его терморегулирующих структур, как показал К. Бернар, демонстрируя «тепловой укол», введение некоторых фармакологических препаратов в лечебных или повышенных дозах, эмоциональный стресс, тиреотоксикоз способны вызвать более или менее длительную гипертермию. Особо следует отметить способность разобщать окисление и фосфорилирование такого химического соединения, как 2,4-аль- фа-динитрофенол. Дозозависимый гипертермический эффект при его парентеральном применении подопытным животным может завершиться летальным исходом при превышении максимально переносимого уровня температуры тела.
ЛИХОРАДКА
Лихорадка (лат. febris) — защитно-приспособительная реакция животного организма на инфекционные факторы и продукты распада собственных тканей, характеризующаяся активным повышением температуры тела. Ее следует рассматривать как наиболее часто встречающийся симптом различных болезней и прежде всего инфекционного происхождения.
Этиология. По причинам, вызывающим повышение теплосодержания в организме гомойотермных животных, лихорадки принято подразделять на инфекционные и неинфекционные.
Лихорадки инфекционного происхождения связаны у животных с внедрением в организм бактерий, простейших, микоплазм, спирохет, риккетсий, хламидий. Эти микроорганизмы служат источником экзогенных пирогенов (от греч. pyretos — жар; genesis —рождение). Экзогенные пирогены могут выделяться микроорганизмами в процессе жизнедеятельности (экзотоксины) или освобождаться при их деградации (эндотоксины). Изучением природы пирогенных субстанций выявлено, что они представляют собой липополисахариды или полисахариды клеточных мембран бактерий. Они малотоксичны, термостабильны, не имеют видовой специфичности, со слабовыраженной антигенностью. Многократное введение липополисахаридов сопровождается толерантностью.
Лихорадка, вызванная попаданием вирусов в организм животного, обусловливается, как полагают, освобождающимися при повреждении клеточно-тканевых структур биологически активными продуктами.
Лихорадки неинфекционного происхождения сопровождают асептические повреждения тканей при обширных механических травмах, внутренних кровоизлияниях, инфарктах миокарда, легких, других органов, при наличии некротических процессов в опухолях, при аллергической альтерации тканей, после оперативных вмешательств.
Повышение температуры тела можно наблюдать также в ряде других случаев: после введения фармакологических препаратов (фенамин, стрихнин, тироксин, адреналин, сульфазол), при эмоциональных напряжениях, сильных болевых раздражениях, парентеральном введении белка, физическом переутомлении, после длительного переохлаждения (у лошадей) и т. д. Высокая температура тела в этих случаях — побочная, а не защитно-приспособительная реакция, поэтому многие авторы склонны считать такое состояние организма лихорадкоподобным.
Патогенез. Лихорадочная реакция по своей природе неспецифична. Ее развитие характеризуется общими закономерностями, свойственными многим инфекционным и незаразным болезням высших гомойотермных животных различных видов и человека.
Пирогены, поступающие с инфекционным началом извне, стимулируют образование в организме животного так называемых эндогенных пирогенов. В образовании этих биологически активных веществ клеточно-тканевого происхождения принимают участие нейтрофилы, моноциты, циркулирующие и фиксированные макрофаги, естественные киллеры (natural killer). К эндогенным пирогенам, как установлено, прежде всего следует отнести интерлейкин-1 (ИЛ-1). Обладая пирогенным эффектом, он выполняет роль посредника в кооперации иммуноцитов при формировании ответа на антигенное раздражение. Кроме ИЛ-1 пирогенными свойствами обладают и другие цитотоксины: фактор некроза опухоли (ФНО), ИЛ-6, альфа-интерферон. Установлено также, что в цепь опосредования влияния бактериальных пирогенов на центры терморегуляции включается лишь одно гуморальное звено — простагландины. Оказалось, что во время лихорадки в спинномозговой жидкости резко возрастает содержание секретируемых нервными клетками простагландинов типа Е1 и Е2. Их микроинъекции в передний гипоталамус сопровождаются очень быстрым нарастанием температуры тела у подопытных животных — овец, коз, кур, крыс. Некоторые лимфокины, выделяемые в гуморальные среды фагоцитирующими макрофагами, стимулируют синтез простагландинов в клетках гипоталамуса. К ним относят ИЛ-1, ИЛ-6, ФНО.
Образование эндогенных пирогенов фагоцитирующими и нефагоцитирующими клетками (эпидермоциты кожи, В-лимфоциты, эндотелиоциты, астроциты и др.) является ведущим патогенетическим фактором в развитии лихорадки вне зависимости от ее происхождения.
Эндогенные пирогены меняют физико-химическое постоянство внутренней среды. Изменения химического статуса, возникающие первоначально в очаге поражения, могут затем распространяться и на гуморальную среду всего организма. Нарушение физико-химических констант внутренней среды приводит к раздражению рецепторного аппарата как на периферии — в тканях, так и в области центральных нервных образований. Доказательством последнего служит весьма быстрый температурный ответ при введении минимальных доз экзо- и эндогенных пирогенов в желудочки мозга.
Возникновение специфической афферентной импульсации и поступление ее в центр терморегуляции — ядра переднего и заднего гипоталамуса — определяют более высокий уровень функционирования этого нервного образования. В обычных условиях интегрированные импульсы «с периферии» сопоставляются в нейронах гипоталамуса с эталонным, генетически заданным значением импульсации, представляющим собой «установочную точку». Отклонение от эталона порождает первичные эфферентные импульсы. Возбуждение пирогенными субстанциями рецепторного аппарата с последующим появлением необычной афферентной импульсации определяет новый уровень функционирования центров терморегуляции. Возникает резкий сдвиг вверх «установочной точки» нейронов гипоталамуса.
В формировании лихорадочной реакции помимо гипоталамических центров принимают участие вышележащие отделы центральной нервной системы. О вовлеченности высших отделов ЦНС в ответную реакцию на пирогены свидетельствуют возможность воспроизведения лихорадки условнорефлекторным путем, повышение температуры тела при эмоциональном напряжении.
Влияние коры больших полушарий мозга выражается прежде всего в регуляции деятельности подкорковых теплорегулирующих центров. Устранение этого влияния в опытах на декортицированных животных приводит к более быстрому и интенсивному повышению температуры в ответ на пирогенное раздражение. Способность декортицированных животных отвечать на пирогены повышением температуры тела свидетельствует о том, что лихорадочная реакция является в своей основе подкорковой безусловно-рефлекторной реакцией организма животного.
Однако изменение функционального состояния коры больших полушарий, ведущее, в свою очередь, к нарушению ее связей с подкорковыми теплорегулирующими центрами, может привести к весьма существенным сдвигам в реакциях организма на пирогенный раздражитель. Развитие тормозного состояния в коре больших полушарий, распространяющееся на нижележащие подкорковые образования, часто ведет к тому, что подъему температуры предшествует отрицательная (гипотермическая) фаза лихорадочной реакции. Это наблюдается при неврозах, наркотическом сне, введении больших доз пирогенов, других состояниях.
Нарушения деятельности теплорегулирующего центра иногда могут быть настолько серьезными, что лихорадка либо совершенно не развивается, либо носит парадоксальный характер, когда введение пирогена сопровождается только гипотермической реакцией.
Следовательно, особенности индивидуальной реактивности по отношению к пирогенным раздражителям, различия в характере и степени лихорадки при одних и тех же заболеваниях у разных животных, как и колебания в характере температурных реакций у одного и того же больного, могут в значительной степени зависеть и от общего соотношения тормозного и возбудительного процессов в центральной нервной системе.
Перестройка уровня функционирования подкорковых нервных образований сопровождается вовлеченностью в реакцию ряда эндокринных желез. Известно, что при интегральном ответе аппарата терморегуляции стимулируются релизинг-факторы (КРФ, ТРФ, ГРФ), управляющие гормональной активностью гипофиза.
В формировании лихорадочной реакции в ответ на бактериальные пирогены существенное значение имеет активация гипоталамо-гипофизарно-надпочечниковой и симпатоадреналовой систем. Освобождение избыточного количества кортикостероидов и освобождение катехоламинов создает легкодоступные источники энергии путем образования глюкозы из гликогена, свободных жирных кислот из резервов триглицеридов, усиливает сердечную деятельность, повышает артериальное давление.
Вместе с тем введение животным лейкоцитарного пирогена, вызывая лихорадку, не изменяет уровня кортикостероидов крови. На этом основании считают, что бактериальные пирогены, обладая несомненным стрессорным действием, одновременно стимулируют образование эндогенных пирогенов. Развиваются две параллельные реакции — стрессорная и лихорадочная, взаимосвязь между которыми представляет большой интерес для дальнейшего изучения.
Определенное значение в развитии лихорадки имеет щитовидная железа. При гипотиреозе наблюдается более вялое течение лихорадочной реакции. Одновременное удаление щитовидной железы и гипофиза, щитовидной железы и надпочечников резко нарушает теплорегуляцию и значительно снижает способность животных лихорадить. При выраженных же явлениях гипертиреоза наблюдаются более резкие и быстрые подъемы температуры тела. Таким образом, лихорадка является сложнейшей интегральной реакцией всего организма.
Перестройка теплообмена на вновь заданный режим функционирования реализуется теми же эффекторными системами, которые определяют основные терморегуляторные реакции при действии на организм адекватных раздражителей.
Участие химической терморегуляции в лихорадочном подъеме температуры тела проявляется приростом образования тепла главным образом в поперечнополосатых мышцах при возникновении непроизвольных сокращений — мышечной дрожи, а также в паренхиматозных органах, особенно в печени.
Главным источником повышенной теплопродукции при лихорадке являются резервы жира, когда под влиянием гипоталамо-гипофизарно-надпочечниковой системы усиливается липолиз в жировой ткани. Наряду с интенсификацией процесса окисления возможно, чаще при инфекционно-токсических лихорадках, разобщение окисления и фосфорилирования, а также расщепление макроэргических соединений, особенно в крови.
Накопление тепла в организме лихорадящих животных определяется не только усиленной теплопродукцией, но и ограничением отдачи тепла во внешнюю среду. Вовлеченность физической регуляции тепла в реализацию лихорадочной реакции осуществляется главным образом вазомоторными рефлекторными реакциями, определяющими величину кожного кровотока, конвективные и радиационные теплопотери.
Соотношение уровней теплопродукции и теплоотдачи зависит от динамики процесса.
Стадии лихорадки. Лихорадочная реакция протекает в три стадии: стадия повышения температуры (stadium incrementum), стадия стояния высокой температуры тела (st. fastigium), стадия снижения температуры (st. decrementum).
В стадии повышения температуры возрастает производство тепла в организме животных и одновременно ограничивается его отдача во внешнюю среду. Повышение теплопродукции связано прежде всего с усилением тонуса мышц и возникновением дрожи — непроизвольным сокращением скелетных мышц. Увеличивается производство тепла и паренхиматозными органами. Возрастает, например, гепаторектальный температурный градиент, что свидетельствует о вовлечении печени в усиленное производство тепла. Теплоотдача во внешнюю среду у животных ограничивается главным образом за счет вазоконстрикции кожных сосудов, взъерошивания волоса, уменьшения потоотделения. Наблюдаемое абсолютное или относительное ограничение теплопотерь ведет к нарастанию теплосодержания, повышению температуры тела (рис. 11).
Стадия стояния высокой температуры тела обеспечивается повышенной теплопродукцией, уравновешенной столь же интенсивной отдачей тепла. Терморегуляция осуществляется на новом, более высоком уровне функционирования, определяемом терморегуляционным центром. Несмотря на суточное колебание температуры тела, теплосодержание в организме остается повышенным. Во время этой стадии высокий уровень температурного гомеостаза не зависит от колебания температуры внешней среды. Организм сохраняет способность адекватно реагировать срочными адаптивными реакциями терморегуляции на резкие изменения окружающей температуры или колебаниями теплопродукции при нагрузке, не связанной с лихорадкой. Например, при дополнительной мышечной работе излишки образующегося тепла быстро выводятся, не сказываясь на общем уровне теплосодержания у лихорадящего животного.
Рис. 11. Температурная реакция на пироген у свиньи (верхняя термограмма) и у лошади (нижняя термограмма). Читать справа налево.
Значения кривых: Вверху: 1 — контрольная линия; 2 — температура печени; 3 — ректальная температура; 4 — температура кожи; Внизу: 1 — контрольная линия; 2— ректальная температура; 3— температура кожи.
Стрелкой обозначено время внутривенного введения пирогена.
В стадии снижения температуры тела продукция тепла в организме животного ограничивается. Уменьшается гепаторектальный температурный градиент. Одновременно возрастают теплопотери — нарастает периферийный кровоток, температура кожи повышается, усиливается потоотделение. Одышка становится более интенсивной. Она сопровождается дополнительной отдачей тепла путем усиленного испарения влаги со слизистых оболочек дыхательных путей. В завершение лихорадочной реакции температура тела восстанавливается.
В зависимости от интенсивности снижения температуры тела различают литическое и критическое снижение. Литическое снижение температуры тела характеризуется продолжительным (2—3 дня) периодом нормализации. Оно сравнительно легко переносится организмом. Критическое же падение происходит быстро, в течение нескольких часов, причем температура тела может опускаться ниже физиологически допустимых границ. Организм не успевает адаптироваться к новым условиям существования. Может развиться острая сердечно-сосудистая недостаточность, а в наиболее тяжелых случаях — коматозное состояние и смерть.
Функционирование органов и систем организма животного при лихорадке.
Центральная нервная система. У продуктивных животных во время лихорадки возникают общее угнетение, вялость. Лошади быстро проявляют признаки усталости, резко выраженной слабости, отказываются от работы. Развитие лихорадки в определенной мере зависит от типа высшей нервной деятельности. Установлено, что у животных с сильным типом нервной системы лихорадочный период, например, после ранения начинался остро и сравнительно быстро заканчивался; у животных же слабого типа лихорадочная реакция развивалась медленно и была более продолжительной.
Сердечно-сосудиста система. Лихорадка сопровождается тахикардией. Увеличение частоты сердечных сокращений зависит от этиологического фактора, вида животных, стадии лихорадки. Однако во всех случаях число сокращений сердца превышает исходные показатели не более чем в 2 раза и не имеет прямой зависимости от степени лихорадочной гипертермии. На один условный градус повышения температуры тела у коров, свиней, лошадей при лихорадке, индуцированной бактериальными липополисахаридами, пульс увеличивается на 14—17 ударов в минуту, у овец — на 20—25, у кур — на 47—53. Синусовый ритм сердечных сокращений сохраняется. Меняется поверхностное кардио-электрическое поле. Укорочение сердечного цикла у копытных животных происходит в основном за счет диастолического периода и в гораздо меньшей степени за счет предсердно-желудочковой проводимости и деполяризации желудочков. У кур сердечный цикл при лихорадке укорачивается только за счет диастолы (рис. 12).
Рис. 12. Электрокардиограмма курицы в норме (вверху) и во второй стадии лихорадки, индуцированной стафилококковой вакциной
Продолжительность деполяризации предсердий и желудочков у лихорадящих животных существенно не меняется. Величина электродвижущей силы (ЭДС) деполяризации предсердий либо не изменяется (коровы, лошади), либо незначительно возрастает (овцы, свиньи). ЭДС деполяризации желудочков во всех стадиях лихорадки возрастает: у овец, свиней, лошадей — на 44— 47%, у коров — на 27%. Изменения ЭДС деполяризации желудочков весьма вариабельны и зависят от стадии лихорадки, вида животных, этиологического фактора. У овец, лошадей, коров, свиней во время лихорадки возникают однонаправленные изменения пространственной ориентации основных векторов электрокардиограмм, снятых в сагиттальных туловищных отведениях (рис. 13). Возрастает коэффициент аритмии.