Поступление анестетика из альвеол в кровь
Если анестетик не поступает из альвеол в кровь, то его фракционная альвеолярная концентрация (FА) быстро станет равна фракционной концентрации во вдыхаемой смеси (Fi). Так как во время индукции анестетик всегда в какой-то степени поглощается кровью легочных сосудов, то фракционная альвеолярная концентрация анестетика всегда ниже его фракционной концентрации во вдыхаемой смеси (FA/Fi < 1,0). Чем быстрее анестетик поглощается кровью, тем медленнее возрастает фракционная альвеолярная концентрация и ниже отношение FA/Fi. Концентрация газа прямо пропорциональна его парциальному давлению, поэтому альвеолярное парциальное давление такого анестетика тоже будет возрастать медленно. Альвеолярное парциальное давление — важный параметр, от него зависит парциальное давление анестетика в крови и, в конечном счете, в головном мозге. Парциальное давление анестетика в мозге прямо пропорционально его концентрации в ткани мозга, которая pi определяет клинический эффект. Следовательно, чем выше скорость поступления анестетика из альвеол в кровь, тем больше разница между Fi и fa, тем медленнее индукция анестезии.
На скорость поступления анестетика из альвеол в кровь влияют три фактора: растворимость анестетика в крови, альвеолярный кровоток и разница парциальных давлений альвеолярного газа и венозной крови.
Низкорастворимые анестетики (закись азота) поглощаются кровью значительно медленнее, чем растворимые (галотан). Соответственно, фракционная альвеолярная концентрация галотана возрастает медленнее, а индукция анестезии занимает больше времени, чем при использовании закиси азота. Коэффициенты распределения (табл. 7-1) позволяют охарактеризовать относительную растворимость анестетиков в воздухе, крови и тканях.
ТАБЛИЦА 7-1. Коэффициенты распределения ингаляционных анестетиков при 37 0C
Анестетик | Кровь/Газ | Мозг/Кровь | Мышцы/Кровь | Жир/Кровь |
Закись азота | 0,47 | 1,1 | 1,2 | 2,3 |
Галотан | 2,4 | 2,9 | 3,5 | |
Метоксифлюран | 2,0 | 1,3 | ||
Энфлюран | 1,9 | 1,5 | 1,7 | |
Изофлюран | 1,4 | 2,6 | 4,0 | |
Десфлюран | 0,42 | 1,3 | 2,0 | |
Севофлюран | 0,59 | 1,7 | 3,1 |
Каждый коэффициент представляет собой отношение концентраций анестетика в двух фазах в состоянии равновесия. Равновесие определяется как состояние, которое характеризуется одинаковым парциальным давлением в обеих фазах. Например, для закиси азота коэффициент распределения кровь/газ (λк/г) при 37 0C составляет 0,47. Это значит, что в состоянии равновесия 1 мл крови содержит 0.47 от того количества закиси азота, которое находится в 1 мл альвеолярного газа, несмотря на одинаковое парциальное давление. Другими словами, емкость крови для закиси азота составляет 47 % от емкости газа. Растворимость галотана в крови существенно выше таковой закиси азота; коэффициент распределения кровь/газ при 37 0C для него составляет 2,4. Таким образом, для достижения равновесия в крови должно раствориться почти в 5 раз больше галотана, чем закиси азота. Чем больше коэффициент кровь/газ, тем выше растворимость анестетика, тем больше его поглощается кровью в легких. Вследствие высокой растворимости анестетика альвеолярное парциальное давление растет медленно и индукция занимает много времени. Поскольку коэффициент распределения жир/кровь у всех анестетиков > 1, то неудивительно, что растворимость анестетика в крови повышается на фоне постпрандиальной гиперлипидемии (т. е. физиологической гиперлипидемии, возникающей после приема пищи) и снижается при анемии.
Второй фактор, влияющий на скорость поступления анестетика из альвеол в кровь,— это альвеолярный кровоток, который (в отсутствие патологического легочного шунта) равен сердечному выбросу. Если сердечный выброс падает до нуля, то анестетик перестает поступать в кровь. Если сердечный выброс увеличивается, то скорость поступления анестетика в кровь, наоборот, возрастает, темп увеличения альвеолярного парциального давления замедляется и индукция анестезии длится дольше. Для анестетиков с низкой растворимостью в крови изменения сердечного выброса играют небольшую роль, потому что их поступление не зависит от альвеолярного кровотока. Низкий сердечный выброс увеличивает риск передозировки анестетиков с высокой растворимостью в крови, так как при этом фракционная альвеолярная концентрация возрастает значительно быстрее. Концентрация анестетика превышает ожидаемую, что по механизму положительной обратной связи приводит к дальнейшему уменьшению сердечного выброса: многие ингаляционные анестетики (например, галотан) снижают сократительную способность миокарда.
Наконец, последний фактор, который влияет на скорость поступления анестетика из альвеол в кровь,— это разница между парциальным давлением анестетика в альвеолярном газе и парциальным давлением в венозной крови. Этот градиент зависит от поглощения анестетика различными тканями. Если анестетик абсолютно не поглощается тканями, то венозное и альвеолярное парциальное давление будут равны, так что новая порция анестетика не поступит из альвеол в кровь. Перенос анестетиков из крови к тканям зависит от трех факторов: растворимости анестетика в ткани (коэффициент распределения кровь/ткань), тканевого кровотока и разницы между парциальным давлением в артериальной крови и таковым в ткани.
В зависимости от кровотока и растворимости анестетиков все ткани можно разделить на 4 группы (табл. 7-2). Головной мозг, сердце, печень, почки и эндокринные органы составляют группу хорошо васкуляризованных тканей, именно сюда в первую очередь и поступает значительное количество анестетика. Небольшой объем и умеренная растворимость анестетиков существенно ограничивают емкость тканей этой группы, так что в них быстро наступает состояние равновесия (артериальное и тканевое парциальное давление становятся равны). Кровоток в группе мышечных тканей (мышцы и кожа) меньше, и потребление анестетика происходит медленнее. Кроме того, объем группы мышечных тканей и, соответственно, их емкость гораздо больше, поэтому для достижения равновесия
ТАБЛИЦА 7-2.Группы тканей, выделенные в зависимости от перфузии и растворимости анестетиков
Характеристика | Хорошо васкуляризованные ткани | Мышцы | Жир | Слабо васкуляризованные ткани |
Доля массы тела, % | ||||
Доля сердечного выброса, % | О | |||
Перфузия, мл/мин/100 г | О | |||
Относительная растворимость | О |
может потребоваться несколько часов. Кровоток в группе жировой ткани практически равен кровото-ку в мышечной группе, но чрезвычайно высокая растворимость анестетиков в жировой ткани приводит к настолько высокой общей емкости (Общая емкость = Растворимость ткань/кровь X Объем ткани), что для достижения равновесия требуется несколько суток. В группе слабо васкуляризован-ных тканей (кости, связки, зубы, волосы, хрящи) кровоток очень низок и потребление анестетика незначительно.
Поглощение анестетика можно представить в виде кривой, характеризующей подъем fa во время индукции анестезии (рис. 7-2). Форма кривой определяется величиной поглощения анестетиков в различных группах тканей (рис. 7-3). Начальный скачкообразный подъем fa объясняется беспрепятственным заполнением альвеол при вентиляции. После исчерпания емкости группы тканей с хорошим кровоснабжением и группы мышечных тканей темп подъема fa существенно замедляется.
Вентиляция
Снижение альвеолярного парциального давления анестетика при поступлении в кровь может быть компенсировано увеличением альвеолярной вентиляции. Иными словами, при увеличении вентиляции анестетик поступает непрерывно, компенсируя поглощение легочным кровотоком, что поддерживает фракционную альвеолярную концентрацию на необходимом уровне. Влияние гипервентиляции на быстрый подъем F/\/Fi особенно наглядно проявляется при использовании анестетиков с высокой растворимостью, потому что они поглощаются кровью в значительной степени.
Рис. 7-2.fa быстрее достигает Fi при использовании закиси азота (анестетик с низкой растворимостью в крови), чем метоксифлюрана (анестетик с высокой растворимостью в крови). Объяснения обозначений fa и Fi даны в рис. 7-1. (Из: Eger E. L. II. Isoflurane [Forane]: A reference and compendium. Ohio Medical Producta, 1981. Воспроизведено с изменениями, с разрешения.)
Рис. 7-3.Подъем и снижение альвеолярного парциального давления предшествуют аналогичным изменениям парциального давления в других тканях. (Из: Cowles A. L. et al. Uptake and distribution of inhalation anesthetic agents in clinical practice. Anesth. Analg., 1968; 4: 404. Воспроизведено с изменениями, с разрешения.)
При использовании анестетиков с низкой растворимостью в крови увеличение вентиляции дает только небольшой эффект. В этом случае отношение FA/Fi быстро достигает необходимых значений без дополнительных вмешательств. В противоположность влиянию на сердечный выброс вызванная анестетиками (например, галотаном) депрессия дыхания ослабляет темп роста фракционной альвеолярной концентрации по механизму отрицательной обратной связи.
Концентрация
Снижение альвеолярного парциального давления анестетика при поступлении в кровь может быть компенсировано увеличением фракционной концентрации анестетика во вдыхаемой смеси. Интересно, что увеличение фракционной концентрации анестетика во вдыхаемой смеси не только увеличивает фракционную альвеолярную концентрацию, но также быстро повышает FA/Fi. Это явление получило название эффекта концентрации и является результатом двух феноменов. Первый из них ошибочно называют концентрационным эффектом. Если в легочный кровоток поступает 50 % анестетика, а фракционная концентрация анестетика во вдыхаемой смеси равна 20 % (20 частей анестетика на 100 частей газа), то фракционная альвеолярная концентрация будет равна 11 % (10 частей анестетика на 90 частей газа). Если же фракционную концентрацию анестетика во вдыхаемой смеси поднять до 80 % (80 частей анестетика на 100 частей газа), то фракционная альвеолярная концентрация составит уже 67 % (40 частей анестетика на 60 частей газа). Таким образом, хотя в обоих случаях в кровь поступает 50 % анестетика, увеличение фракционной концентрации анестетика во вдыхаемой смеси приводит к диспропорциональному увеличению фракционной альвеолярной концентрации анестетика. В нашем примере 4-кратное увеличение фракционной концентрации во вдыхаемой смеси вызывает 6-кратное увеличение фракционной альвеолярной концентрации. Если взять заведомо нереальный, крайний случай, когда фракционная концентрация анестетика во вдыхаемой смеси равна 100% (100 частей из 100), то, несмотря на поглощение кровью 50 % анестетика, фракционная альвеолярная концентрация анестетика составит 100 % (50 частей анестетика на 50 частей газа).
Эффект усиления притока — второй феномен, благодаря которому возникает эффект концентрации. Вернемся к описанному выше примеру. Для предотвращения коллапса альвеол 10 частей абсорбированного газа должны быть замещены эквивалентным объемом вдыхаемой 20 % смеси. Таким образом, фракционная альвеолярная концентрация будет равна 12%(10 + 2 части анестетика на 100 частей газа). После поглощения кровью 50 % анестетика с фракционной концентрацией во вдыхаемой смеси 80 % необходимо заместить недостающие 40 частей газа эквивалентным объемом 80 % смеси. Это приведет к увеличению фракционной альвеолярной концентрации с 67 до 72 % (40 + 32 части анестетика на 100 частей газа).
Эффект концентрации имеет наибольшее значение при использовании закиси азота, потому что ее, в отличие от других ингаляционных анестетиков, можно применять в очень высоких концентрациях. Если на фоне высокой концентрации закиси азота вводить другой ингаляционный анестетик, то увеличится (благодаря тому же механизму) поступление в легочный кровоток обоих анестетиков. Влияние концентрации одного газа на концентрацию другого получило название эффекта второго газа.