Кислотно-основное состояние. Практически все химические реакции в организме человека зависят от поддержания концентрации ионов водорода в физиологически допустимых пределах
Практически все химические реакции в организме человека зависят от поддержания концентрации ионов водорода в физиологически допустимых пределах. Концентрация ионов водорода жестко регулируется, поскольку ее изменения могут вызвать дисфункцию многих органов и систем.
Сложную систему регуляции концентрации водородных ионов часто называют кислотно-основным состоянием, знание которого чрезвычайно важно для анестезиолога. Интраоперационные изменения вентиляции и перфузии быстро приводят к изменениям кислотно-основного состояния. Следовательно, чтобы правильно проводить анестезию, необходимо хорошо разбираться в нарушениях кислотно-основного состояния, их влиянии на организм и методах лечения.
В этой главе обсуждается физиология и патофизиология кислотно-основного состояния, а также предлагается системный подход к интерпретации результатов анализа газов крови.
Определения и терминология
Химия кислот и основанийКонцентрация ионов водорода и рН
В любом водном растворе молекулы воды обратимо диссоциируют на ионы водорода и гидроксид-ные ионы:
H2O ~ H+ + ОН'.
Кинетику этого процесса можно описать с помощью константы диссоциации Kw:
Kw= [H+] х [OhT] = I (Г14.
Концентрацию воды в знаменателе этого уравнения опускают, поскольку она не имеет существенного значения и уже включена в константу. Следовательно, если [H+] или [ОН~] известна, можно легко рассчитать концентрацию другого иона.
Пример:если [H+] = КГ8 нмоль/л, тогда [ОН ] = KT1VlO'8= 10~6 нмоль/л.
В норме [H+] артериальной крови составляет 40 нмоль/л (40 X КГ9 моль/л). Проводить расчеты с числами такого порядка крайне неудобно, поэтому концентрацию ионов водорода принято выражать через рН. рН раствора — это отрицательный десятичный логарифм концентрации ионов водорода (рис. 30-1). Следовательно, в норме рН артериальной крови составляет -log (40 X 10~9) = 7,40. Концентрация ионов водорода от 16 до 160 нмоль/л (рН 6,8-7,8) совместима с жизнью.
Как и большинство других констант диссоциации, Kw зависит от температуры. Если температура составляет 25 0C, то точка электронейтральности для воды достигается при рН 7,0, если 37 0C — то при рН 6,8. Изменения рН в зависимости от температуры имеют важное значение при гипотермии (гл.21).
Рис. 30-1.Взаимосвязь между рР1 и [H+]. В интервале значений рН от 7,1 до 7,5 зависимость между рН и [H+] принимает почти линейный характер. (Из: Narins R. G., Emmett M. Simple and Mixed Acid-base Disorders: A Practical Approach. Medicine, 1980; 59: 161.)
Кислоты и основания
В соответствии с определением Бренстеда-Лоури, кислотой называют донор протона (H+), а основанием — акцептор протона. Соответственно, кислотность водного раствора отражает концентрацию РГ. Сильной кислотой является вещество, которое легко и почти необратимо отдает H+ и повышает [H+] в растворе. Сильное основание, наоборот, активно связывает H+ и снижает [H+]. Слабые кислоты обратимо отдают H+, а слабые основания — обратимо связывают H^; те и другие оказывают меньшее влияние на [H^] в растворе, чем сильные кислоты и основания. Большинство биологических соединений являются либо слабыми основаниями, либо слабыми кислотами.
Для растворов, содержащих слабую кислоту НА, где
НА ~ H+ + А',
константу диссоциации К рассчитывают следующим образом:
К - [H+] х [A']/ [НА], или [H+] = К X [HA]/ [A"].
Последнее уравнение, представленное в форме отрицательного десятичного логарифма, называют уравнением Гендерсона-Хассельбальха:
РН = рК+log ([A-]/[HA]).
Из этого уравнения следует, что рН раствора зависит от величины отношения концентрации аниона к концентрации недиссоциированной кислоты.
Сопряженные пары и буферы
В то время как находящаяся в растворе слабая кислота НА отдает H+, А~ может действовать как основание, присоединяя H+. Поэтому А" называют сопряженным основанием для НА. Подобная концепция применима и для слабых оснований. Слабое основание В можно представить следующим образом:
в + н+ — вн+.
Тогда BH^является сопряженной кислотой для В. Буфером является раствор, содержащий слабую кислоту и сопряженное с ней основание или слабое основание и сопряженную с ней кислоту (сопряженные пары). Буферы, легко отдавая или присоединяя ионы водорода, нивелируют изменения [H+]. Из уравнения Гендерсона-Хассельбальха следует, что буферы наиболее эффективно компенсируют изменения рН в растворе, когда рН = рК. Кроме того, чтобы буфер функционировал эффективно, в растворе должно содержаться значительное количество сопряженных пар.
Клинические нарушения
При описании нарушений кислотно-основного состояния и компенсаторных механизмов необходимо использовать точную терминологию (табл. 30-1). Суффикс "оз" отражает патологический процесс, приводящий к изменению рН артериальной крови. Нарушения, которые приводят к снижению рН, называют ацидозом,тогда как состояния, которые вызывают увеличение рН,— алкалозом.Если первопричиной нарушений является изменение концентрации бикарбоната ([HC(V]), то их называют метаболическими. Если же первопричиной нарушений является изменение PaCO2, то их называют респираторными. Вторичные компенсаторные реакции следует обозначать именно как реакции, не используя суффикса "оз". Например, можно сказать "метаболический ацидоз с респираторной компенсацией".
В случаях, когда имеется только одно первичное нарушение кислотно-основного состояния, его называют простым.Если имеются два или более первичных процесса, то говорят о смешанномнарушении кислотно-основного состояния.
Суффикс "-емия" применяется для характеристики суммарного эффекта всех первичных патологических процессов и компенсаторных физиологических реакций на рН артериальной крови. Поскольку рН артериальной крови у взрослого человека в норме равно 7,36-7,44, ацидемия означает рН < 7,35, алкалемия — рН > 7,45.
Компенсаторные механизмы
Физиологическая реакция организма в ответ на изменения [H+] во времени подразделяется на три фазы: 1) немедленная химическая реакция буферных систем; 2) дыхательная компенсация (при метаболических нарушениях кислотно-основного состояния); 3) более медленная, но более эффективная компенсаторная реакция почек, способная
ТАБЛИЦА 30-1.Диагностика нарушений кислотно-основного состояния
Нарушение | Первичные изменения | Компенсаторная реакция |
Респираторный | ||
Ацидоз | IPaCO2 | IHCO3- |
Алкалоз | IPaCO2 | JHCO3- |
Метаболический | ||
Ацидоз | JHCO3- | IPaCO2 |
Алкалоз | IHCO3- | TPaCO2 |
практически полностью нормализовать рН артериальной крови даже при сохраняющемся патологическом процессе.