Основные меры положения и рассеяния.
Меры положения частного распределения, их характеристика.
На практике ряды распределения описываются различными числовыми характеристиками (мерами).
1 Мода (Мо) – это варианта, наиболее часто встречающаяся в совокупности (= модальное значение).
2 Медиана (Ме) – это величина, делящая ранжированный ряд на 2 равные части. Так же она делит площадь под кривой распределения. Для того, чтобы определить Ме надо ранжировать ряд (в порядке возрастания), вычислить номер, под которым стоит медиана.
N/2 – Для четных, (N+1)/2 – Для нечетного количества объектов
3 Средняя арифметическая простая – это частное деление суммы всех
значений признака на их общее число объектов
X=(X1+X2+X3…+Xn)/N
Сумма всех <+> и <–> отклонений от х равно «0».
Среднюю арифметическую простую вычисляют для неупорядоченных рядов в тех случаях, когда каждая варианта встречается 1 раз.
4 Средняя взвешенная
Если в совокупности отдельные варианты встречаются неоднократно, то вычисляется средняя взвешенная – это величина, полученная суммированием произведений числовых значений вариант на их частоты с последующим делением суммы на количество всех вариант.
=(х1n1+x2n2+x(n)n(n))/N x1n1+y2n2
5 Средняя квадратическая используется, если признаки выражаются мерами площади. Пример: размер колонии микробов, листовых пластинок.
Средняя гармоническая, кубическая, геометрическая
Меры рассеяния частного распределения.
Его характеристика.
Разброс числовых значений вариант (генеральной, выборочной совокупности) относительно средних значений характеризуется мерами рассеяния.
1. Лимит – минимальная и максимальная варианта совокупности. (Xmin, Xmax)
2. Вариационный размах – разность между максимальным и минимальным значением R=Xmax-Xmin
3. Индивидуальное отклонение – разность между числовым значением варианты и средним арифметическим всей совокупности Di=Xi-
4. Дисперсия – мера рассеяния, полученная суммированием квадратов индивидуальных отклонений и последующим делением суммы на объем совокупности.
- для генеральной
- для выборочной совокупности
Если число объектов менее 30, то рассчитывается исправленная дисперсия (Сигма с крышей)
Где N-1 – число степеней свободы. Это число на 1 меньше, чем весь объем свободности
5. Стандартное (среднее квадратичное) отклонение. Эта мера рассеяния, равная корню квадрата дисперсии, S=корень квадратный из . Чем сильнее варьирует признак, тем больше величина среднего квадратного отклонения.
6. Коэффициент вариации - мера рассеяния равна, отношению стандартного отклонения к средней арифметической V=(S/X)100%
При нормальном распределении коэффициент вариации не > 50%, а часто гораздо ниже (приблизительно 20%)