Соотношения между проекциями момента диполя и напряжением
Любой вектор полностью характеризуются его проекциями на две координатные оси, лежащие в той же плоскости, что и сам вектор. Наиболее привычной для нас является декартова система координат с двумя взаимно перпендикулярными осями, хотя использование любых других
( непараллельных) осей тоже возможно. Как будет показано в разделах 6.4 и 6.5 наиболее удобными в данном случае оказываются оси, расположенные по сторонам равностороннего треугольника.
Если точечный диполь, создающий электрическое поле, находится в центре равностороннего треугольника АВС, то из формулы (7) следует, что напряжения на концах сторон этого треугольника относятся как проекции вектора Р на его стороны (рис. 8) , так как зависимости от расстояния ( r ) и от угла (ß) в формуле (7) будут одинаковыми и при вычислении отношения сократятся:
UАВ:U ВС :UАС=РАВ:РВС:РАС (8)
Из соотношения (8), измерив напряжения UАВ, UВС, UАС, можно определить относительную величину проекций вектора Р на стороны треугольника: РАВ, РВС, РАС, а по известным проекциям, в свою очередь, можно рассчитать величину самого вектора Р (рис. 9).
Таким образом, соотношение между электрическим вектором
сердца и потенциалами точек на поверхности тела человека наиболее просто устанавливается в том случае, еслиэти потенциалы измерены в точках, расположенных в вершинах равностороннего треугольника по отношению к ЭВС .
, РАВ=РСosα