Пятно будет бледнеть, оставаясь светлее тени

ИНТЕРФЕРЕНЦИЯ

На экране Р наблюдается интерференционная картина от источников S1и S2.Что называется шириной интерференционной полосы? Расстояние между:
Cоседними максимумами или минимумами интенсивности.

На экране Р наблюдается картина интерференции от двух точечных когерентных источников с длиной волны 500 нм. В точке А фаза колебаний от источника S1 -235 Пи, от S2- 229 Пи. Определите разность фаз колебаний Ф и порядок интерференции k.
k= 3; Ф = 6 Пи
Изображение точечного монохроматического источника S строится линзой L в точке А. Линзу разрезали пополам и сместили одну половину вдоль SA. Опишите распределение интенсивности в плоскостях, перпендикулярных SA, между точками А и В.
Темные и светлые полуокружности с центром на SA.
В опыте Юнга наблюдается картина в красном свете на экране Р, расположенном от источников S1и S2 на расстоянии 1 м. Для того, чтобы получить картину с тем же периодом в синем свете необходимо отодвинуть экран на 60 см. Найдите отношение длин волн красного и синего света.
answer1=1.6 % 5
Луч света от источника S попадает в интерферометр Майкельсона, делится светоделителем R1на две части, которые затем сходятся на экране Р. Возникающая при этом разность хода между интерферирующими лучами равна:
2*(OM1-OM2)
Кольца Ньютона наблюдаются в отраженном свете с использованием двух различных объектов А и В, помещенных на плоскопараллельной пластине. Выберите правильный вариант исполнения этих объектов и наличия оптического контакта.
А - сферическая линза; В - конус. Контакт- справа.
Что произойдет с картиной колец Ньютона, наблюдаемой в отраженном монохроматическом свете, если в системе линза-пластина заменить пластину на вторую плосковыпуклую линзу ?
Картина сожмется, центр останется темным.

Для устранения отраженных бликов от поверхности стекла применяют специальное интерференционное покрытие. Рассчитайте параметры такого просветляющего покрытия (n1 и d) для нормального падения зеленого света с длиной волны 520 нм на стеклянную поверхность с n2 = 1,69.
n1= 1.30;d = 0.10 мкм
В точке А на экране Р наблюдается интерференция от двух точечных источников S1и S2. Что называется порядком интерференционной полосы?
Число длин волн, укладывающихся в оптической разности хода.
Экран освещается двумя монохроматическими источниками: S1и S2 с длинами волн 450 нм и 600 нм соответственно. Геометрическая длина пути S1A = 600,006 мм, а S2A = 600,003 мм. Определите оптическую разность хода (Delta) лучей в точке A и результат интерференции.
Delta = 3 мкм; интерференция не наблюдается.
Амплитуда сигнала от радиомаяка модулируется в приемнике удаляющегося корабля из-за интерференции по схеме Ллойда. Как изменяется при этом оптическая разность хода? Вода в радиодиапазоне является проводником.
Монотонно уменьшается.
В установке Ллойда на экране P наблюдается интерференционная картина. Во сколько раз оптическая разность хода (Delta) в точке N больше длины волны излучения и каков результат интерференции в ней, если S1M = MN = 250,015 мм, S1N = 500,000 мм, длина волны света 600 нм.
В 50,5 раз; минимум.
Воздушный клин, образованный между двумя плоскопараллельными пластинами, освещается плоской монохроматической волной. Определите правильный вариант картины интерференционных полос в прошедшем свете. (Если, на Ваш взгляд, правильного нет - введите ноль.)
0
При освещении тонкой пленки точечным источником S на экране в отраженном свете наблюдаются полосы равного наклона. Определите окраску отраженного света в точках А, В и С, если на всем экране наблюдают полосы одного порядка.
А - красная, В - зеленая, С - фиолетовая.
Картина интерференционных колец Ньютона наблюдается в проходящем свете. Показатели преломления линзы и пластины - n1 и n2. Что произойдет, если зазор между линзой и пластиной заполнить жидкостью с показателем преломления n3 при условии: n1> n3> n2?
Картина сожмется; в центре появится минимум.
Картина интерференционных колец Ньютона наблюдается в отраженном свете через два светофильтра - красный и фиолетовый. Определите отношение длин волн пропускания красного и фиолетового светофильтров.
1,67
Во сколько раз расстояние от щелей до экрана в опыте Юнга должно быть больше расстояния между щелями, для того, чтобы период интерференционной картины превосходил длину волны света в 1000 раз ?
1000
Два параллельных монохроматических луча падают нормально на стеклянную призму (n =1,5) и после преломления выходят из нее. Определите (в миллиметрах) оптическую разность хода лучей к моменту времени, когда они достигнут плоскости АВ. Угол Alpha = 30°, a = 2 см.
0
На экране P наблюдается картина интерференции в схеме бипризмы Френеля. Показатель преломления вещества бипризмы n1, преломляющий угол ? Как изменится картина интерференции, если бипризму поместить в воду (см. рис., n2< n1)?
Ширина интерференционной полосы увеличится.
Из линзы L, в переднем фокусе которой находится точечный источник S, вырезана центральная часть шириной h = 0,6 мм. Обе половины сдвинуты до соприкосновения. Найдите (в миллиметрах) ширину интерференционных полос на экране Р, если длина волны 600 нм, а фокусное расстояние f = 50 см.
0,5
Наблюдается система интерференционных полос равной толщины в воздушном клине. Выберите все правильные варианты формы клина, соответствующие изображенной интерференционной картине.
1 и 5
Выберите все способы, которыми можно изменить оптическую разность хода в интерферометре Майкельсона?
Вращением зеркала М1.
Перемещением зеркала M2.
На стеклянную поверхность (n2 = 1,64) необходимо нанести просветляющее покрытие. Зная, что коэффициент отражения зависит только от относительного показателя преломления и угла падения, выберите показатель преломления для вещества пленки.
1,28
Пленку толщиной менее 0,15 мкм освещают точечным источником белого света. В отраженном свете в точке А она имеет желтую окраску. Как будет изменяться окраска пленки, если источник света приближать к ее поверхности из положения 1 в положение 2?
Будет смещаться к синему краю спектра.
Выберите верное условие, соответствующеее расположению точечного источника и двух его мнимых изображений в интерференционной схеме зеркал Френеля.
Они находятся на дуге окружности с центром в точке О.
В установке Ллойда на экране P наблюдается интерференционная картина. S1- точечный источник света, S2- его мнимое изображение в плоском зеркале. Как изменится картина интерференции на экране P если S1 отодвинуть от плоскости зеркала на малое расстояние h?
Уменьшится ширина интерференционной полосы.
В опыте Юнга на пути луча d2 поставлена тонкая стеклянная пластинка, вследствие чего центральная полоса сместилась в положение, первоначально занятое пятой светлой полосой. Длина волны излучения 600 нм, показатель преломления пластинки n =1,5. Какова в микрометрах толщина пластинки?
6,0
Высота радиомаяка над уровнем моря H=150 м. Высота мачты (принимающей сигналы маяка) приближающегося корабля h= 12,5 м, длина волны излучения 1,1 м. Определить на какой дальности будет зарегистрирован первый максимум сигнала.Поверхность воды в этом случае можно рассматривать как поверхность проводника.
6818
Выберите правильное выражение для оптической разности хода (Delta) лучей, отраженных от стеклянной плоскопараллельной пластинки. Падающий свет имеет плоский волновой фронт и длину волны Lambda.
Delta) = 2dn cos (beta) + (Lambda) /2
В интерферометре Майкельсона одно из непрозрачных зеркал M2 передвинули на расстояние deltaХ равное десяти длинам волн. На сколько полос сместится картина интерференции на экране Р ?
20
На экране в точке А наблюдается интерференционное кольцо N-го порядка от точечного монохроматического источника, освещающего плоскопараллельную стеклянную пластину. Как будет меняться номер кольца в этой точке в двух случаях: а) увеличении d; b) уменьшении n ?
а) будет увеличиваться; b) будет уменьшаться.
Кольца Ньютона наблюдаются в отраженном монохроматическом свете в системе с воздушным зазором. Выберите правильный вариант отношения квадратов радиусов светлых колец R1, R2 и R3.
1 : 3 : 5
Выберите вариант формы интерференционных полос в опыте Юнга с узкими щелями ?
2
Источник S (длина волны 400 нм) создает в схеме Юнга два когерентных источника, помещенных в бензол (n=1,5). В точку А на экране луч от S1 дошел за t1 = 2,0000Е(-10)c, а от S2- за t2 = 2,0002Е(-10)c. Определите разность фаз колебаний Ф в точке А и порядок интерференции k.
Ф = 30 Пи;k= 15
Как изменяется расстояние между изображениями S1S2 и ширина интерференционной полосы d на экране, если увеличивать угол Alpha в схеме зеркал Френеля?
S1S2увеличивается; dуменьшаетс
Высота радиомаяка над уровнем моря H = 200 м, расстояние до корабля d = 5,5 км. Определите оптимальную высоту мачты корабля для приема сигналов с длиной волны 1,5 м. Поверхность воды в этом случае можно рассматривать как поверхность проводника.
10,3
Почему картину интерференционных колец Ньютона предпочитают наблюдать в отраженном, а не проходящем свете ?
Контрастность колец в отраженном свете выше.
Изображена картина интерференционных полос равной толщины в отраженном свете, полученная при освещении стеклянного клина излучением двух длин волн. Определите форму клина и расположение ребра.
Угол клина постоянен, ребро слева.
При отражении от тонкой водяной пленки под углом Alpha белый свет приобрел красноватый оттенок. Что будет происходить с цветом пленки при: а) ее испарении и b) увеличении угла падения ?
Пленка начнет желтеть в обоих случаях.
Между двумя поверхностями образован тонкий клин, заполненный водой (n=1,34) и освещенный монохроматическим излучением с длиной волны 670 нм. Определите в нанометрах разность толщин клина в точках А и В.
500
Чему равна оптическая разность хода (Delta) в точке А, если d1, d2 - геометрические длины путей, пройденные лучами от соответствующих точечных источников в средах с показателями преломления n1 и n2?
Delta) =d1*n1–d2*n2
Два когерентных источника с длиной волны (Lambda) 600 нм помещены в две среды - сероуглерод (n1 = 1,665), и бромоформ (n2 = 1,6665). В точку А на экране луч от S1 дошел за t1 = 1,110Е(-10) с, а от S2 за t2 = 1,111Е(-10) с. Какова разность хода (Delta) и порядок (k) интерференции в точке А.
Delta= 50Lambda;k= 50
На экране Р наблюдается интерференционная картина от двух точечных когерентных источников S1 и S2. На сколько микрометров изменится разность хода в точке О, если на пути луча от S1 поместить мыльную пленку толщиной 1 мкм ? Длина волны излучения 660 нм, показатель преломления воды n = 4/3.
0,33
В опыте с бизеркалами Френеля расстояние между мнимыми источниками равно 1 мм; расстояние от источников до экрана P - 1 м. Длина волны 550 нм. Определить (в миллиметрах) расстояние OA от центрального пятна на экране до четвертого минимума.
1,925
Выберите все лучи, интерференция которых образует картину колец Ньютона в отраженном свете.
2и3
Что произойдет с центральным пятном в картине колец Ньютона, если пространство между линзой и пластиной заполнить сероуглеродом (n = 1,67) вместо воздуха. (Картина рассматривается в проходящем свете).
Центральное пятно сожмется и останется светлым.
На плоскопараллельную пластину положили бипризму с тупым углом, близким к 180 град. Ребро бипризма параллельно линии а - а. Введите номер правильного варианта формы интерференционных полос равной толщины, образующихся в проходящем свете.
2
Мыльная пленка стекает вниз, постепенно утоньшаясь. Определите в нанометрах толщину пленки в точке А, где наблюдается в отраженном монохроматическом свете с длиной волны 520 нм последняя светлая полоса. Показатель преломления пленки 1,30.
100
На экране Р наблюдается стабильная интерференционная картина от 2-х когерентных источников (S1, S2) с длиной волны 600 нм. Kак изменится оптическая разность хода в точке М, если бы длина волны источников была равна 400 нм ?
Не изменится.
На экране P наблюдается картина интерференции в схеме бипризмы Френеля. Показатель преломления вещества бипризмы n, преломляющий угол Alpha. Как изменится картина интерференции, если незначительно уменьшить угол Alpha?
Увеличится ширина интерференционной полосы.
В опыте Юнга отверстия освещались светом с длиной волны 600 нм, расстояние между отверстиями 1мм и расстояние от отверстий до экрана 3 м. Определите (в миллиметрах) расстояние ОА (расстояние на экране от точки центрального максимума до точки второго минимума интерференции).
2,7
Изображение точечного монохроматического источника S строится линзой L (фокусное расстояние f) в точке А. Линзу разрезали пополам и раздвинули на расстояние h. Каким должно быть расстояние d чтобы наблюдать картину интерференции?
d>f
Луч света от источника S попадает в интерферометр Майкельсона, делится светоделителем R1на две части, которые затем сходятся на экране Р. Возникающая при этом разность хода между интерферирующими лучами равна:
2*(OM1-OM2)
В точке А измеряют интенсивность монохроматического излучения, отраженного от плоскопараллельной пластины. Определите изменение величины сигнала в точке А при постепенном уменьшении толщины d. Угол падения (альфа) постоянен и равен 45°.
Интенсивность периодически меняется.
Полосы равной толщины наблюдают при отражении излучения двух длин волн от стеклянного клина. Определите зависимость угла клина от координаты Х и расположение ребра клина.
Угол клина постоянен. Ребро справа.
Интерференционные полосы наблюдаются в воздушном клине, образованном двумя стеклянными пластинами и зажатой между ними проволокой. Найдите в миллиметрах толщину проволоки, если длина волны 550 нм, h = 3 см, а шаг интерференционной картины равен 0,05 мм.
0.165
В каком случае интерференционная картина в плоскости экрана Р будет наиболее контрастной? ( А1 и А2- амплитуды интерферирующих волн в точке М от точечных источников S1 и S2 соответственно.)
А1= А2
На экране P наблюдается картина интерференции в схеме бипризмы Френеля. Показатель преломления вещества бипризмы n, преломляющий угол? Как изменится картина интерференции, если взять такую же призму но с n' > n.
Ширина интерференционной полосы уменьшится.
В схеме Юнга на экране наблюдается картина интерференции (длина волны 450 нм). Геометрические длины путей до точки А - S2F =700,003мм; S1A =700,006мм. Определить разность фаз колебаний (Ф) в точке А и порядок интерференции k. Система находится в бензоле (n = 1,5).
Ф = 20 Пи;k=10
Из линзы L, в переднем фокусе которой находится точечный источник S, вырезана центральная часть шириной h. Обе половины сдвинуты до соприкосновения. Как изменится ширина интерференционных полос на экране Р при его перемещении из положения Р1в Р2?
Ширинаполоснеизменится.
Как изменится картина интерференционных колец Ньютона, если зазор между линзой и пластиной заполнен жидкостью с показателем преломления большим, чем показатель преломления стекла ?
Картина сожмется к центру.
Смещение интерференционной картины на экране Р за счет подвижки зеркала М2 в интерферометре Майкельсона составило две полосы. Чему равно отношение расстояния Delta Х к длине волны излучения ?
1,0
Кольца Ньютона наблюдаются в проходящем свете в системе: плосковыпуклая линза (n1 = 1,73) вложена в плосковогнутую (n2 = 1,63), между ними залит сероуглерод (n3 = 1,67) . Введите номер правильного условия возникновения светлых колец, записанного так, чтобы левая часть равенства представляла собой оптическую разность хода интерферирующих лучей.
5
Между двумя поверхностями образован тонкий клин, заполненный водой (n =1,34) и освещенный монохроматическим излучением с длиной волны 670 нм. Определите в нанометрах разность толщин клина в точках А и В.
500
На экране Р наблюдается интерференция от двух когерентных источников S1 и S2. Определите во сколько раз оптическая разность хода в точке А больше длины волны излучения источников S1 и S2. В точке О расположен центр интерференционной картины.

1,5
В схеме Юнга на пути луча d2 поставили стеклянную пластинку так, что оптическая длина пути этого луча увеличилась на 20 длин волн. Что произошло с картиной интерференции на экране и какова оптическая разность хода (Delta) в точке М? (ОМ = 10 мм; S1S2 = 3000 lambda; d = 1,5 м.)
Delta) = 0; картина интерференции сместится вниз
В интерференционной установке бизеркал Френеля расстояние между изображениями источника света S1S2 = 0,5 мм, расстояние до экрана P - 5 м. В зеленом свете получились полосы на расстоянии 5 мм друг от друга. Определите (в нанометрах) длину волны зеленого света.
500
Билинза Бийе, образованная путем удаления центральной полосы линзы и совмещения оставшихся половинок, создает интерференционную картину в области перекрытия пучков. Как изменяется число полос N и ширина полосы d при смещении экрана из положения Р1 в Р2?
d не изменяется; N сначала возрастает, а затем уменьшается.
Наблюдается система интерференционных полос равной толщины в воздушном клине. Выберите все правильные варианты формы клина, соответствующие изображенной интерференционной картине.
1 и 5
Кольца Ньютона наблюдаются в отраженном свете с использованием двух различных объектов А и В, помещенных на плоскопараллельной пластине. Выберите правильный вариант исполнения этих объектов и наличия оптического контакта.
А - сферическая линза; В - конус. Контакт-справа.
На стеклянную поверхность (n2 = 1,64) необходимо нанести просветляющее покрытие. Зная, что коэффициент отражения зависит только от относительного показателя преломления и угла падения, выберите показатель преломления для вещества пленки.
1,28
В отраженном монохроматическом свете наблюдаются полосы равной толщины в зазоре сложной формы между двумя стеклами. Определите соотношение между толщинами зазора в точках А и В, если при уменьшении длины волны света полосы начинают "стягиваться" в точку А.
Толщина зазора в точке В больше.
На экране Р наблюдается интерференция излучения длиной волны (lamda); от двух когерентных источников S1 и S2. Определите (в градусах) разность фаз интерферирующих лучей в точке А. В точке О расположен центр интерференционной картины.
540
В установке Ллойда на экране Р наблюдается интерференционная картина. S1 - точечный источник света с длиной волны 600 нм. Как изменится картина интерференции на экране Р, если источник S1 незначительно придвинуть к экрану Р?
Ширина интерференционной полосы увеличитс
На экране Р наблюдается интерференционная картина от двух точечных когерентных источников S1 и S2. На сколько изменится разность фаз колебаний в точке О, если на пути луча от S1 поместить мыльную пленку толщиной 1 мкм ? Длина волны излучения 660 нм, показатель преломления воды n=4/3.
На Пи
Радиотелескоп распроложен на берегу моря на высоте h = 110 м. Радиоизлучение Солнца, отражаясь от воды, интерферирует по схеме Ллойда. Определить выражение для оптической разности хода в момент, когда угловая высота Солнца над горизонтом равна (alpha).
2hsin(alpha) + (lambda)/2
Воздушный клин, образованный между двумя плоскопараллельными пластинами, освещается плоской монохроматической волной. Определите правильный вариант картины интерференционных полос в прошедшем свете. (Если, на Ваш взгляд, правильного нет - введите ноль.)
0
При освещении тонкой пленки точечным источником S на экране в отраженном свете наблюдаются полосы равного наклона. Определите окраску отраженного света в точках А, В и С, если на всем экране наблюдают полосы одного порядка.
А - красная, В - зеленая, С - фиолетовая.
Исследуется картина интерференции в отраженном свете от точечного монохроматического источника. В точках А и В наблюдаются минимумы k1 и k2 порядков соответственно. Определите форму полос и соотношение между k1 и k2.
Кольца с центром в точке О. k1> k2.
На поверхности стали при закалке возникла окисная пленка синего цвета (длина волны 416 нм, n = 1,6). Выберите все возможные значения толщины пленки, если известно, что наблюдается интерференция не более чем второго порядка, а фаза волны при отражении от металла меняется на 180°.
0.130мкм
0.260мкм

ДИФРАКЦИЯ

Экран с отверстием освещается точечным монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно что оказалось открытым нечетное число френелевских зон.
1 и 3

Монохроматическая волна интенсивностью J0 падает на круглое отверстие диаметра d, открывающего для точки наблюдения Р одну зону Френеля. Определите, во сколько раз интенсивность в точке Р больше, чем J0 ? (амплитуде в точке Р соответствует один из векторов, показанных на фазовой диаграмме).
4.0
Свет от точечного источника S дифрагирует на круглом отверстии. Амплитуде в точке наблюдения соответствует на векторной диаграмме вектор АВ. Экран с отверстием заменяют диском того же диаметра. Выберите новый вектор, соответствующий амплитуде в точке Р.
BO
На экране наблюдается дифракция Френеля на круглом отверстии от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.
2
Свет от точечного монохроматического источника S дифрагирует на круглом отверстии. Амплитуде в точке наблюдения соответствует на векторной диаграмме вектор АВ. Во сколько раз нужно увеличить диаметр отверстия, чтобы этой же точке соответствовал вектор АС ?
1,73

Плоский волновой фронт падает на экран с отверстием радиусом R, закрытым стеклянной пластиной (показатель преломления n). Величина R соответствует для точки Р первой зоне Френеля. Найдите минимальную глубину выемки радиуса r = R /корень квадратный из 2-х, увеличивающую интенсивность в точке Р вдвое.
h = lambda /12 (n -1)

I(x) - распределение интенсивности дифрагированного на узкой щели излучения, где x - координата в плоскости экрана, перпендикулярная длинной стороне щели. Найдите расстояние от щели до экрана, если lambda = 570 нм, а= 13.2 мм, ширина щели -0.06 мм.
Правильного ответа нет

Чему равна постоянная дифракционной решетки (в мкм), если эта решетка может разрешить в первом порядке линии спектра калия 4044 А и 4047 А ? Ширина решетки 3 см.
22
Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите правильный вариант, если известно что оказались открытыми четыре френелевских зоны.
2 и 4

Амплитуде дифрагированной волны на экране в точке наблюдения соответствует вектор АВ, показанный на фазовой диаграмме. Как изменится интенсивность в точке наблюдения, если диаметр отверстия увеличивают, добиваясь для той же точки амплитуды АС ?
Вообще не изменится.

Свет от источника S дифрагирует на круглом отверстии. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке наблюдения, если: 1) отверстие открывает почти 7 первых зон; 2) вместо экрана с отверстием - диск того же диаметра; 3) экрана нет вообще.
answer1=Вектора на диаграмме не соответствуют условию
1.АВ, 2.ВС, 3.АС

На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.
4

Точечный источник света S (длина волны 0,5мкм) расположен на расстоянии а = 100 см перед экраном с круглым отверстием диаметром 1,0 мм. Найти расстояние b (в метрах) до точки наблюдения Р, для которой амплитуда волны изображается вектором АВ на векторной диаграмме.
2,0

Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 1,5 зоны Френеля. В пластине сделаны две круглые выемки: первая - внутренняя, глубиной h1 и радиусом R1/корень из2, вторая в виде кольца глубиной h2 и шириной (R1-R1/корень из2). Величины h соответствуют максимальной интенсивности в точке Р на экране. Найти эту интенсивность.
8 J0и18 J0

На щель ширины d=3,0 мкм нормально падает плоская световая волна ( с длиной волны = 0,5 мкм). Определить количество максимумов (N) интенсивности, наблюдаемых в фокальной плоскости линзы. Диаметр линзы считать бесконечным.
11

Постоянная дифракционной решетки шириной 2,5см равна 2мкм. Какую разность длин волн (в ангстремах) может разрешить эта решетка в области длин волн 600нм в спектре второго порядка?
0,24
Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно что оказались открытыми пять френелевских зон.
1

Плоская монохроматическая волна с интенсивностью J0 падает по нормали на круглое отверстие диаметром d. Определите, во сколько раз интенсивность волны в точке наблюдения больше, чем J0, если ее амплитуде соответствует вектор АВ, показанный на векторной диаграмме ?
2

Свет от источника S дифрагирует на круглом отверстии. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке Р, если: 1) отверстие открывает почти 5 первых зон; 2) вместо экрана с отверстием - диск того же диаметра; 3) экрана нет вообще.
Вектора на диаграмме не соответствуют условию

На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.
3

Между точечным источником S и точкой наблюдения на экране находится экран с отверстием, радиус которого можно изменять. При некотором значении R амплитуда в точке Р соответствует вектору АВ1. Что произошло с радиусом отверстия, если вектор амплитуды переместился в положение АВ2?
Увеличился в 1,29 раза.

Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 1,5 зоны Френеля. В пластине сделаны две круглые выемки: первая - внутренняя, глубиной h1 и радиусом R1/корень из2, вторая в виде кольца глубиной h2 и шириной (R1-R1/корень из2). Величины h соответствуют максимальной интенсивности в точке Р на экране. Найти величину h2.
h2=3 lambda /4(n-1)

Узкая щель S шириной 35 мкм освещается монохроматическим излучением с плоским фронтом (lambda =620 нм). На экране (см.картинку) наблюдается дифракция Фраунгофера с характерным размером х. Определите величину х, если расстояние от щели до экрана равно 80см.
14,2 мм
Дифракционная решетка освещается параллельным, нормально падающим пучком света. .В зрительной трубе, под углом 30° к оси решетки видны совпадающие линии (lambda1=675нм и lambda2=450нм). Наибольший порядок, который дает эта решетка - 4-ый. Определить период решетки(в мкм).
2,7
Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно что оказались открытыми шесть френелевских зон.
4
Амплитуде дифрагированной волны в точке наблюдения соответствует вектор АВ, показанный на фазовой диаграмме. Как будет изменяться интенсивность в точке Р по мере увеличения диаметра отверстия до размера, которому будет соответствовать вектор амплитуды АС ?
Будет сначала возрастать, а затем убывать.
Свет от источника S дифрагирует на круглом отверстии. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке Р, если: 1) отверстие открывает почти 3 первых зон; 2) вместо экрана с отверстием - диск того же диаметра; 3) экрана нет вообще.
1.АВ, 2.ВС, 3.АС
Свет от точечного монохроматического источника S дифрагирует на круглом отверстии. Параметры системы таковы, что для точки Р открыто 1,5 зоны Френеля. На векторной диаграмме сложения вторичных волн найдите вектор, соответствующий амплитуде в точке Р.
AC

На рисунке представлены распределения дифрагированного на щели плоского монохроматического излучения в трех плоскостях Р1,Р2 и Р3.Оцените (в сантиметрах) дистанцию Рэлея R, условно отделяющую области дифракции в ближней и дальней зоне. Ширина щели 150 мкм, lambda = 0,45 мкм.
5,0

Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 2 зоны Френеля. В пластине сделана круглая выемка глубиной h и радиусом r (r- радиус первой зоны Френеля). Величина h минимальна, и соответствует максимальной интенсивности в точке Р на экране. Найти величину h.
h= lambda /2(n-1)

I(x) - распределение интенсивности дифрагированного на узкой щели излучения, где x - координата в плоскости экрана, перпендикулярная длинной стороне щели. Найдите ширину щели(в мкм), если lambda =0.51 мкм, а=8.3 мм, а расстояние от щели до экрана - 765 мм.
47
question_text=Ширина решетки равна 15мм, постоянная d=5мкм. В спектре какого наименьшего порядка получается раздельное изображение двух спектральных линий с разностью длин волн 1А, если линии лежат в красной части спектра вблизи =740нм?
3
Экран с отверстием освещается точечным монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно что оказалось открытым четное число френелевских зон.
2 и 4
Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Параметры системы и длина волны таковы, что амплитуде в точке Р соответствует на векторной диаграмме сложения вторичных волн вектор АВ. Введите число френелевских зон, открытых для точки Р.
0,5

Монохроматическая волна падает на круглое отверстие изменяемого диаметра d и создает на экране Р картину дифракции Френеля. Пользуясь предложенной фазовой диаграммой определите, какой номер соответствует самому большому отверстию (А), а какой - самой большой интенсивности в центре (В) ?
А - 1; В - 3

Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Определите, что будет происходить с картиной на экране при постепенном увеличении диаметра диска.

Пятно будет бледнеть, оставаясь светлее тени.

Плоская волна падает на экран с прямоугольной щелью ширины d. При этом в точке Р наблюдается самый глубокий минимум. Затем щель расширяют еще на 0,7 мм и наблюдают следующий минимум. Найдите число открытых зон k1и k2, если b=60 см.
k1 = 2; k2= 4

Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 2 зоны Френеля. В пластине сделана круглая выемка глубиной h и радиусом r (r- радиус первой зоны Френеля). Величина h минимальна, и соответствует максимальной интенсивности в точке Р на экране. Найти интенсивность в точке Р .
16 J0

Определить разрешающую способность решетки и разрешит ли решетка, имеющая постоянную 20мкм, натриевый дублет (lambda1=5890А и (lambda2=5896А) в спектре первого порядка, если длина нарезанной части решетки 2 см?
R = 1000 , разрешит

На фотопластинке наблюдается дифракция монохроматического излучения (lambda=390 нм) в дальней зоне от круглого отверстия. Какая часть энергии прошедшего через отверстие излучения сосредоточена в пределах центрального пятна (кружка Эйри).
около84%
Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите правильный вариант, если известно что оказались открытыми cемь френелевских зон.
3

В точке Р наблюдается дифракция излучения от точечного источника S на круглом отверстии D. Открыто 14 первых зон Френеля. Что произойдет с интенсивностью волны в точке Р, если семь внешних зон закрыть непрозрачным экраном ?
Увеличится многократно
Свет от точечного монохроматического источника S дифрагирует на круглом отверстии. Параметры системы таковы, что для точки наблюдения открыто 2 зоны Френеля. На векторной диаграмме сложения вторичных волн найдите вектор, соответствующий амплитуде в точке наблюдения.
Правильного ответа нет
Расстояние от центра амплитудной зонной пластинки до ее главного фокуса равно F. Выберите правильное выражение для n-ого кратного фокуса (n=0,1,2...)
F/ (2n+1)
Плоская волна падает на экран с прямоугольной щелью ширины d1.При этом в точке Р наблюдается максимально воэможная интенсивность. Затем щель расширяют еще на 0,2 мм и наблюдают следующий максимум. Найдите число открытых зон k1и k2.
k1= 1;k2= 3
Плоская световая волна интенсивностью J0 (длина волны lambda) падает нормально на стеклянную пластину (показатель преломления n) с круглой выемкой глубины h и радиуса R. Для точки Р радиус R соответствует первой зоне Френеля, а величина h - максимальной интенсивности. Найдите hmin.
lambda/ 2 (n-1)
Узкая щель S шириной 1 мм освещается монохроматическим излучением с плоским фронтом (lambda=0.58 мкм). На экране наблюдается дифракция Фраунгофера с характерным размером а. Определите величину а (в мм), если расстояние SO=30см.
Условия не соответствуют дифракции Фраунгофера
При освещении белым светом дифракционной решетки спектры третьего и четвертого порядков отчасти перекрывают друг друга. На какую длину волны (в нм) в спектре третьего порядка накладывается фиолетовая граница спектра четвертого порядка (lambda= 410 нм).
547
Плоская монохроматическая волна с интенсивностью J0 падает по нормали на круглое отверстие диаметром d. Определите, во сколько раз интенсивность волны в точке наблюдения больше, чем J0, если ее амплитуде соответствует вектор АВ, показанный на векторной диаграмме ?
2.0

На рисунке представлены распределения дифрагированного на щели плоского монохроматического излучения в трех плоскостях Р1,Р2 и Р3.Каков смысл указанной на рисунке дистанции Рэлея R ?
Соответствует одной открытой зоне.

На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.
4

Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Выберите все верные утверждения, касающиеся этого пятна.
Пятно появляется, если диском перекрыто любое число зон Френеля.
При увеличении D пятно становится уже и бледнее.
При уменьшении L пятно становится уже и бледнее.

Плоская монохроматическая волна падает нормально на экран с круглым отверстием D. Диаметр отверстия уменьшается в N раз. Найдите новое расстояние b, при котором в точке Р будет наблюдаться та же дифракционная картина, но уменьшенная в N раз.
b/(N*N)

Плоская световая волна интенсивностью J0 (длина волны lambda) падает нормально на стеклянную пластину (показатель преломления n) с круглой выемкой глубины h и радиуса R. Для точки Р радиус R соответствует первой зоне Френеля, а величина h - максимальной интенсивности. Найдите интенсивность в точке Р.
9 J0

Наши рекомендации