Матричная запись квадратичной формы
Как на счёт матриц? :) Знаю, знаю, соскучились. В практических задачах широко распространенная матричная запись квадратичных форм. Объяснения опять начну с формы линейной, например, от трёх переменных: . Её можно записать, как произведение двух матриц:
И действительно, выполняя матричное умножение, получаем матрицу «один на один»: , единственный элемент которой можно эквивалентно записать вне матрицы: .
Легко понять, что линейная форма «эн» переменных записывается в виде:
Квадратичная форма представима в виде произведения уже трёх матриц:
, где:
– столбец переменных;
– его транспонированная строка;
– матрица квадратичной формы.
Это так называемая симметрическая матрица, на главной диагонали которой расположены коэффициенты при квадратах неизвестных, а симметрично относительно неё – «смешанные» коэффициенты, причём, строго на «своих местах» (например, – в 1-й строке, 3-м столбце и 1-м столбце, 3-й строке).
Определитель называют дискриминантом квадратичной формы, а ранг матрицы – рангом квадратичной формы.
Если перемножить три матрицы , то получится в точности длинная «простыня» из предыдущего параграфа, но разворачивать её мы, конечно, не будем, а посмотрим, как это происходит в элементарном случае . Согласно общей формуле, матричная запись данной формы имеет следующий вид:
И в самом деле:
далее:
, в чём и требовалось убедиться.
Как вариант, сначала можно было перемножить правые матрицы, и затем первую матрицу умножить на полученный результат.
Вам понравилось так же, как и мне? Ну тогда пример для самостоятельного решения =)
Пример 1
Записать квадратичную форму в матричном виде и выполнить проверку. Определить дискриминант и ранг формы.
…что-то смущает? ;) Краткое решение и ответ в конце урока! Статьи об определителе и ранге матрицы – в помощь.
После чего разберём аналогичную задачу с формой трёх переменных:
Пример 2
Записать матрицу квадратичной формы, найти её ранг и дискриминант
Решение: сбросим тяжёлую ношу лишних формул, и будем ориентироваться на сами члены:
– слагаемое дважды содержит 1-ю переменную, поэтому ;
– из аналогичных соображений определяем и сразу записываем результаты на главную диагональ симметрической матрицы: .
Так как в слагаемое входят 1-я и 2-я переменная, то (не забываем поделить на 2) и данный коэффициент занимает свои законные места: .
Поскольку в форме отсутствует член с произведением (а точнее, присутствует с нулевым множителем: ), то , и на холст отправляются два нуля: .
И, наконец, из слагаемого определяем , после чего картина завершена:
– матрица квадратичной формы. Вот так-то оно бывает – мы не только не испугались «страшных обозначений» , но и заставили их работать на себя!
По условию не требовалось записывать матричное уравнение, однако науки ради:
Желающие могут перемножить три матрицы, в результате чего должна получиться исходная квадратичная форма.
dr
Теперь определим ранг формы. Он равен рангу матрицы . Так как в матрице есть хотя бы один ненулевой элемент, например, , то ранг не меньше единицы. Теперь вычислим минор , значит, ранг не меньше двух. И осталось проверить минор 3-го порядка, т.е. определитель всей матрицы. Здесь я ко второму столбцу прибавлю третий и раскрою определитель по 3-й строке:
, значит,
Если не очень понятно, что к чему, обязательно изучите статью о ранге матрицы – это довольно замысловатая задачка, и перед нами оказался лишь простой случай, когда угловые миноры не равны нулю.
Дискриминант квадратичной формы получен автоматом.
Ответ: , ранг равен трём, дискриминант
Следующее задание для самостоятельного решения:
Пример 3
Восстановить квадратичную форму по её матрице
При этом не нужно вспоминать никаких формул! Решение почти устное:
– сначала смотрим на главную диагональ и записываем слагаемые с квадратами переменных;
– затем анализируем симметричные элементы 1-й строки (или 1-го столбца), и записываем все слагаемые, в которые входит 1-я переменная (не забывая удвоить коэффициенты);
– далее смотрим на оставшиеся симметричные элементы 2-й строки (справа от диагонали) либо 2-го столбца (ниже диагонали) и записываем соответствующие парные произведения (с удвоенными коэффициентами!).
– и, наконец, анализируем правую нижнюю пару симметричных чисел.
Подробное решение и ответ в конце урока.