Математическое ожидание числа появления события в схеме независимых испытаний.
Пусть производится n независимых опытов, вероятность появления события в каждом из которых равна Р. Число появлений события в этих n опытах является случайной величиною Х распределённой по биномиальному закону. Однако, непосредственное вычисление её среднего значения громоздко. Для упрощения воспользуемся разложением, которым будем пользоваться в дальнейшем неоднократно: Число появления события в n опытах состоит из числа появлений события в отдельных опытах, т.е.
Где имеет закон распределения (принимает значение 1, если событие в данном опыте произошло, и значение 0, если событие в данном опыте не появилось).
Р | 1-р | р |
Поэтому
Или
т.е. среднее число появлений события в n независимых опытах равно произведению числа опытов на вероятность появления события в одном опыте.
Например, если вероятность попадания в цель при одном выстреле равна 0,1, то среднее число попадания в 20 выстрелах равно 20×0,1=2.
Дисперсия ДСВ
Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.
Для вычисления дисперсии можно использовать слегка преобразованную формулу
т.к. М(х), 2 и постоянные величины, то
Свойства дисперсии
Свойство 1. Дисперсия постоянной равна нулю. По определению
Свойство 2. Постоянную можно выносить за знак дисперсии с возведением в квадрат.
Доказательство:
Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания.
Центрированная величина обладает двумя удобными для преобразования свойствами:
Свойство 3. Если случайные величины Х и У независимы, то
Дисперсия числа появления события в схеме независимых испытаний
Производится n независимых испытаний и вероятность появления события в каждом испытании равна р. Выразим, как и прежде, число появления события Х через число появления события в отдельных опытах
Так как опыты независимы, то и связанные с опытами случайные величины независимы. А в силу независимости имеем
Р | 1-р | р |
Но каждая из случайных величин имеет закон распределения и , поэтому по определению дисперсии
Где q=1-p
В итоге имеем ,
Среднее квадратическое отклонение
Дисперсия, как характеристика разброса случайной величины, имеет один недостаток. Если, например, Х – ошибка измерения имеет размерность ММ, то дисперсия имеет размерность . Поэтому часто предпочитают пользоваться другой характеристикой разброса – средним квадратическим отклонением, которое равно корню квадратному из дисперсии.
Среднее квадратическое отклонение имеет ту же размерность, что и сама случайная величина.