Механика абсолютно твердого тела
Кинематика вращательного тела
Абсолютно твердое тело
Абсолютно твердым телом называется недеформированное тело, т.е. такое, у которого размеры и форма не меняются при движении.
При изучении движения абсолютно твердого тела его представляют как совокупность большого числа материальных точек, расстояния между которыми остаются неизменными.
Вращательное движение абсолютно твердого тела вокруг неподвижной оси и его кинематические характеристики
Всякое сложное движение твердого тела можно разбить на два простых: поступательное и вращательное.
Рассмотрим вращательное движение твердого тела вокруг закрепленной оси. Это такое движение, при котором все точки тела движутся по окружностям с центрами, лежащими на оси вращения.
] [
] [
Рис. 2.1
Основными кинематическими характеристиками такого движения являются следующие:
1. Угловое перемещение – это векторная физическая величина, численно равная углу поворота твердого тела , направленная вдоль оси вращения и связанная с направлением вращения правилом правого винта (рис. 2.1).
2. Угловая скорость - это векторная физическая величина, численно равная и совпадающая по направлению с угловым перемещением, совершаемым за одну секунду:
. (2.1)
Если задана зависимость угловой скорости от времени, то можно найти угловое перемещение, совершаемое телом за определенный промежуток времени:
,
,
. (2.2)
3. Угловое ускорение.
Быстрота изменения угловой скорости характеризуется угловым ускорением:
. (2.3)
Угловым ускорением называется физическая величина, численно равная и совпадающая по направлению с приращением угловой скорости за единицу времени.
Зная зависимость углового ускорения от времени, можно найти изменение угловой скорости за определенный промежуток времени
(2.4)
Скорости, с которыми точки твердого тела движутся по окружностям, называются линейными скоростями. Линейная скорость точек зависит от их расстояния до оси вращения, и связана с угловой скоростью твердого тела соотношением
(2.5)
Изменение линейной скорости характеризуется линейным ускорением, которое складывается из тангенциального и нормального ускорений.
Модуль тангенциального ускорения связан с модулем углового ускорения соотношением:
(2.6)
Модуль нормального ускорения связан с модулем угловой скорости соотношением:
(2.7)
Равнопеременное вращение твердого тела вокруг неподвижной оси.
Если угловое ускорение при вращении твердого тела остается постоянным ( ), то законы изменения кинематических характеристик имеют вид:
(2.8)
Число оборотов, которое тело делает за одну секунду, называется частотой вращения . Это величина, обратная периоду обращения , т.е. времени одного полного оборота.
(2.9)
Если тело сделает оборотов, то
(2.10)