Критерий оптимальности транспортной задачи
План перевозок
является оптимальным планом тогда и только тогда, когда найдется система платежей
для которой выполняются условия :
Доказательство. Сформулируем вторую теорему двойственности в терминах переменных транспортной задачи.
Ели
удовлетворяют ограничениям прямой задачи, а
удовлетворяют ограничениям двойственной задачи, то для оптимальности плана
необходимо и достаточно выполнение условий
Условие а) выполняется для любых допустимых решений прямой задачи, так как
Условие b) можно расписать как следствие о дополняющей нежесткости, а именно
Итак, для базисных переменных
имеем равенство
а для небазисных переменных
достаточно выполнения допустимости двойственных переменных
Таким образом имеем условия 1) и 2) критерия.
Критерий доказан.
9.5 Построение опорного плана транспортной задачи
Методы решения транспортной задачи сводятся к простым операциям с транспортной таблицей, которая имеет вид:
Базисными клетками транспортной таблицы являются клетки с от-
личными от нуля положительными перевозками, остальные клетки - свободные. Базисные клетки образуют опорный план транспортной задачи, если выполняются два условия:
1) сумма перевозок в каждой строке равна запасу в данной
строке;
2) сумма перевозок в каждом столбце равна соответствующему
столбцу спросу
Опорный план транспортной задачи содержит не более n+m-1
отличных от нуля перевозок
Опорный план называется вырожденным, если число ненулевых перевозок
меньше и n+m-1, опорный план - невырожден, если число
ненулевых перевозок равно n+m-1.
Рассмотрим способы построения опорного плана в невырожденном и вырожденном случаях.
Метод севево-западного угла
Рассмотрим "северо-западный угол" незаполненной таблицы, то
есть клетку, соответствующую первому поставщику и первому потребителю.
Возможны три случая.
Это означает, что первый поставщик отгрузил весь произведенный продукт первому потребителю и его
запас равен нулю, поэтому
При этом неудовлетворенный спрос в первом пункте потребления равен
то есть спрос первого потребителя полностью удовлетворен и поэтому
а остаток продукта в первом пункте производства равен
из рассмотрения можно исключить и поставщика, и потребителя. Однако при атом план получается вырожденным,
поэтому условно считается, что выбывает только поставщик,
а спрос потребителя остается неудовлетворенным и равным нулю.
После этого рассматриваем северо-западный угол оставшейся не-
заполненной части таблицы и повторяем те же действия. В результате
через n+m-1 шагов получим опорный план.
10. Математическая модель транспортной задачи. Открытые и закрытые задачи. Допустимый, опорный и оптимальный планы перевозок.
Под названием «транспортная задача» объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.
Открытая и закрытая транспортные задачи. Выделяют два типа ТЗ: открытая ТЗ и закрытая ТЗ.
Транспортная задача называется закрытой, если выполняется условие баланса : суммарный объем производства равен суммарному объему потребления:
. (3.1)
Следнет обратить внимание на то, что математическая модель задает закрытую транспортную задачу.
Открытая ТЗ имеет место в двух случаях.
Первый случай. Суммарный объем производства меньше суммарного объема потребления:
. (3.2)
Известно, что для существования допустимого решения транспортной задачи необходимо и достаточно, чтобы задача была закрытой. Поэтому транспортную задачу открытого типа предварительно необходимо свести к закрытой, для чего вводится фиктивный пункт производства с номером m+1 с объемом производства:
, (3.3)
при этом полагают .
Второй случай. Суммарный объем производства больше суммарного объема потребления:
. (3.4)
Для сведения ТЗ к закрытому типу вводят фиктивный пункт потребления с номером n+1 с объемом потребления:
, (3.5)
при этом полагают .
Методы решения.
· Как задача линейного программирования ТЗ может быть решена симплекс методом [4].
· Также разработаны специальные (более эффективные) методы решения транспортной задачи: обобщенный венгерский метод [4]; метод северо-западного угла, метод минимального элемента для нахождения опорного плана; метод потенциалов для нахождения оптимального плана [3].
11. Построение начального (опорного) плана перевозок по методу северо–западного угла и по методу наименьшей стоимости.
1.Метод северо-западного угла. При нахождении опорного плана на каждом шаге рассматривают первый из оставшихся пунктов отправления и первый из оставшихся пунктов назначения. Заполнение клеток таблицы условий начинается с левой верхней клетки для неизвестного («северо-западный угол») и заканчивается клеткой для неизвестного , т.е. как бы по диагонали таблицы.
2. Метод наименьшей стоимости. Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую и в клетку , которая ей соответствует, помещают меньшее из чисел и , затем из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс размещения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.