Пара сил. Векторный момент пары. Алгебраический момент пары.

Па́ра сил — совокупность двух сил, которые приложены к одному абсолютно твёрдому телу и при этом равны по модулю и противоположны по направлению.

Пара сил представляет собой важный частный случай системы сил. Главным вектором для неё служит нулевой вектор, так что действие пары сил на тело полностью характеризуется её главным моментом, который является свободным вектором (не зависит от выбора полюса) и называется моментом пары сил.

В соответствии с этим, момент пары сил не имеет точки приложения (утверждение, иногда называемое «второй теоремой Вариньона»): к каким бы частям твёрдого тела ни прикладывались силы, составляющие пару, при данных модуле и направлении момента пары двигаться оно будет одинаково.

Кратчайшее расстояние между линиями действия сил, образующих пару, называют плечом пары. Модуль момента пары сил равен произведению модуля одной из сил на плечо: Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru . Как и любой механический момент, момент пары сил является псевдовекторной величиной; он направлен перпендикулярно плоскости, задаваемой линиями действия сил: Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru (при этом направление вектора плеча Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru условно следует задавать в сторону к точке приложения выбранной из пары силы Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru ).

Пара сил, момент которой отличен от нуля — простейший пример системы сил, не имеющей равнодействующей.

Действие силы, приложенной к твёрдому телу на некотором расстоянии d от центра масс (в точке, в которую из центра масс можно провести вектор Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru ), эквивалентно действию такой же силы, приложенной непосредственно к центру масс, комбинированной с некоторой парой сил, такой, что Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru , то есть с моментом, равным моменту силы относительно центра масс (в частности, если Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru , можем задаться Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru , в таком случае одна из сил будет приложена в той же точке, что и исходная, и составит Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru ).

Эквивалентность пар. Теорема об эквивалентности пар.

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Существует две теоремы об эквивалентности пар:

Теорема 1. ( Об эквивалентности пар на плоскости ). Две пары, лежащие в одной плоскости и имеющие равные по величине и по знаку моменты, эквивалентны.

Теорема 2. ( Об эквивалентности пар в пространстве ). Две пары, лежащие в параллельных плоскостях и имеющие равные по величине и по знаку моменты, эквивалентны.

Вопрос 12

Докажем лемму: Сила, приложенная в какой-либо точке твердого тела, эквивалентна такой же силе, приложенной в любой другой точке этого тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения. Пусть в точке А твердого тела приложена сила F Приложим теперь в точке В тела систему двух сил F' и F²-, эквивалентную нулю, причем выбираем F'=F (следовательно, F"=–F). Тогда сила F~(F, F', F"), так как (F',F")~0. Но, с другой стороны, система сил (F, F', F") эквивалентна силе F' и паре сил (F, F"); следовательно, сила F эквивалентна силе F' и Пара сил. Векторный момент пары. Алгебраический момент пары. - student2.ru паре сил (F, F"). Момент пары (F, F") равен M=M(F,F")=BAxF, т.е. равен моменту силы F относительно точки В M=MB(F). Таким образом, лемма о параллельном переносе силы доказана.

Вопрос 13

Алгебраическим моментом силы относительно точки называют произведение модуля силы на плечо силы относительно этой точки взятое со знаком плюс или минус. Плечом h силы относительно точки называют кратчайшее расстояние между этой точкой и линией действия силы, т.е. длину отрезка перпендикуляра, опущенного из точки О на линию действия силы . Обозначим Мо( ) или Мо алгебраический момент силы относительно точки О. Тогда:Мо( ) = ±Fh.Если сила стремится вращать тело вокруг моментной точки (точки, относительно которой вычисляют алгебраический момент силы) против часовой стрелки, то берём знак плюс, если по часовой стрелке – знак минус.Алгебраический момент силы представляет собой произведение силы на длину. (в СИ Н*м).
Из определения алгебраического момента силы относительно точки следует, что он не зависит от переноса силы вдоль её линии действия. Алгебраический момент силы относительно точки равен нулю, если линия действия силы проходит через моментную точку. Сумма алгебраических моментов относительно точки двух равных по величине, но противоположных по направлению сил, действующих вдоль одной прямой, равна нулю. Численно алгебраический момент относительно точки равен удвоенной площади треугольника, построенного на силе и моментной точке:
Мо( ) = ±2 пл. ▲±ОАВ.

Впрос 14

Теорема Пуансо. Силу, приложенную к твердому телу, можно из данной точки, не изменяя ее действия, перенести параллельно самой себе в любую другую точку тела (или пространства), прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, в которую она переносится. Точку, к которой приводят систему сил, называют центром приведения данной системы сил.

Осн теор статики (теорема Пуансо): Всякую пространственную систему сил в общем случае можно заменить эквивалентной системой, состоящей из одной силы, прило­женной в какой-либо точке тела (центре приведения) и равной глав­ному вектору данной системы сил, и одной пары сил, момент которой равен главному моменту всех сил относительно выбранного центра приведения. Пусть О — центр приведения, принимаемый за начало коорди­нат, r1,r2, r3,…, rn–соответствующие радиусы-векторы точек приложения сил F1, F2, F3, ...,Fn, составляющих данную систему сил (рис. 4.2, а). Перенесем силы F1, Fa, F3, ..., Fn в точку О. Сложим эти силы как сходящиеся; получим одну силу: Fо=F1+F2+…+Fn=åFk, которая равна главному вектору (рис. 4.2, б). Но при последователь­ном переносе сил F1, F2,..., Fn в точку О мы получаем каждый раз соответствующую пару сил (F1, F”1), (F2,F”2),...,(Fn, F"n).Моменты этих пар соответственно равны моментам данных сил относительно точки О: М1=М(F1,F”1)=r1 x F1о(F1), М2=М(F2, F”2)=r2 x F2о(F2), …, Мп=М(Fn, F"n)=rn x Fnо(Fn). На основании правила приведения системы пар к простейшему виду все указанные пары можно заменить одной парой. Ее момент равен сумме моментов всех сил системы относительно точки О, т. е. равен главному моменту, так как согласно формулам (3.18) и (4.1) имеем (рис. 4.2, в) М012+...+Мnо(F1)+Мо(F2)+…+ Мо(Fn)==åМо(Fk)=årk x Fk. Систему сил, как угодно расположенных в пространстве, можно в произвольно выбранном центре приведения заменить силой Fo=åFk (4.2) и парой сил с моментом M0=åM0(Fk)=årk x Fk. (4.3). В технике очень часто проще задать не силу или пару, а их моменты. Например, в характеристику электромотора входит не сила, с которой статор действует на ротор, а вращающий момент.

Наши рекомендации