Формы учета результатов измерений

Для наглядного представления экспериментальных данных используются различные приемы, облегчающие прежде всего визуальный анализ полученной в эксперименте информации. К таким приемам относят таблицы, ряды распределений, графики, гистограммы. Их применяют с той целью, чтобы полученные экспериментальные данные представить наглядным образом и можно было бы в явной форме увидеть характерные особенности и результаты эксперимента.

•Первичный экспериментальный материал, полученный психологом, нуждается в соответствующей обработке. Обработка начинается с упорядочения и систематизации собранных данных. Процесс систематизации результатов эксперимента, объединение их в относительно однородные группы по некоторому признаку называется группировкой.

Группировка — это не просто технический прием, позволяющий представить первичные данные в ином виде, но, прежде всего, такая операция, которая позволяет глубже выявить связи между изучаемыми явлениями. От того, как группируется исходный материал, во многих случаях зависят выводы о природе изучаемого явления. Поэтому группировка должна быть обдуманной, отвечать требованию поставленной задачи и соответствовать содержанию изучаемого явления.

Таблицы

Наиболее распространенной формой группировки экспериментальных данных являются статистические таблицы.Таблицы бывают простыми и сложными.К простым относятся таблицы, применяемые при альтернативной группировке, когда одна группа испытуемых противопоставляется другой; например, здоровые — больным, высокие люди — низким и т.п. Пример простой таблицы приведен ниже (см. Таблицу 3.1). В ней представлены результаты обследования мануальной асимметрии у 110 учащихся 3—6-х классов.

Таблица 3.1

Классы Праворукие Леворукие Сумма
3 и 4
5 и 6
Сумма

Из таблицы видно, что леворукие ученики чаще встречаются среди учащихся пятых и шестых классов, чем среди третьих и четвертых классов.

Можно в большей степени детализировать эту таблицу, выделив каждый класс в отдельную строку:

Таблица 3.2

Классы Праворукие Леворукие Сумма
Суммы

Из таблицы 3.2 хорошо видно, что леворуких учащихся больше в пятых классах школы, и меньше — в третьих.

Простые таблицы рекомендуется использовать, когда измерение изучаемых признаков производится в номинативной или ранговой шкале.

Усложнение таблиц происходит за счет возрастания объема и степени дифференцированности представленной в них информации. К сложным таблицам относят так называемые многопольные таблицы, которые могут использоваться при выяснении причинно-следственных отношений между варьирующими признаками. Такие таблицы, как правило, имеют сложное строение, позволяющее одновременно осуществлять разные варианты группировки данных. Примером сложной таблицы служит Таблица 3.3, в которой представлены классические данные Ф. Гальтона, иллюстрирующие наличие положительной зависимости между ростом родителей и их детей. Таблица организована таким образом, что позволяет оценить частоту встречаемости в популяции однозначно фиксируемых соотношений роста родителей и роста ребенка. Например, при низком росте родителей в 66 дюймов (1 дюйм равен 2,54 см) только один из 144 обследованных детей имел рост в 60,7 дюймов, а 56 детей имели рост 66,7 дюйма. В то же время высокий рост детей (74,7 дюйма) был зафиксирован только в тех семьях, где родители имели рост не ниже 70 дюймов.

Таблица 3.3

Рост родителей Рост детей в дюймах Всего
60,7 62,7 64,7 66,7 68,7 70,7 72,7 74,7
             
   
 
 
     
Всего

Эта таблица позволяет выявить тенденцию, заключающуюся в том, что у высоких родителей, как правило, дети имеют высокий рост, а у низкорослых родителей чаще бывают дети невысокого роста. Данный пример показывает, что таблицы имеют не только иллюстративное, но и аналитическое значение, позволяя обнаруживать разные аспекты связей между варьирующими признаками.

Следует запомнить, что правильно составленные таблицы — это большое подспорье в экспериментальной работе, позволяющее одновременно осуществлять разные варианты группировки полученных данных.

3.2. Статистические ряды

Особую форму группировки данных представляют так называемые статистические ряды, или числовые значения признака, расположенного в определенном порядке.

В зависимости от того, какие признаки изучаются, статистические ряды делят на атрибутивные, вариационные, ряды динамики, регрессии, ряды ранжированных значений признаков и ряды накопленных частот. Наиболее часто в психологии используются вариационные ряды, ряды регрессии и ряды ранжированных значений признаков.

Вариационным рядом распределения называют двойной ряд чисел, показывающий, каким образом числовые значения признака связаны с их повторяемостью в данной выборке. Например, психолог провел тестирование интеллекта по тесту Векслера у 25 школьников, и сырые баллы по второму субтесту оказались следующими: 6, 9, 5, 7, 10, 8, 9, 10, 8, 11, 9, 12, 9, 8, 10, 11, 9, 10, 8, 10, 7, 9, 10, 9, 11. Как видим, некоторые цифры попадаются в данном ряду по несколько раз. Следовательно, учитывая число повторений, данные ряд можно представить в более удобной, компактной форме:

Варианты Хi (3.1)
Частоты вариант fi

Это и есть вариационный ряд. Числа, показывающие, сколько раз отдельные варианты встречаются в данной совокупности, называются частотами, или весами, вариант. Они обозначаются строчной буквой латинского алфавита fi. и имеют индекс «i», соответствующий номеру переменной в вариационном ряду.

Общая сумма частот вариационного ряда равна объему выборки, т.е.

формы учета результатов измерений - student2.ru

Частоты можно выражать и в процентах. При этом общая сумма частот или объем выборки принимается за 100%. Процент каждой отдельной частоты или веса подсчитывается по формуле:

формы учета результатов измерений - student2.ru

формы учета результатов измерений - student2.ru формы учета результатов измерений - student2.ru Процентное представление частот полезно в тех случаях, когда приходится сравнивать вариационные ряды, сильно различающиеся по объемам. Например, при тестировании школьной готовности детей города, поселка городского типа и села были обследованы выборки детей численностью 1000, 300 и 100 человека соответственно. Различие в объемах выборок очевидно. Поэтому сравнение результатов тестирования лучше проводить, используя проценты частот.

Приведенный выше ряд (3.1) можно представить по-другому. Если элементы ряда расположить в возрастающем порядке, то получится так называемый ранжированный вариационный ряд:

Варианты Хi (3.3)
Частоты fi

Подобная форма представления (3.3) более предпочтительна, чем (3.1), поскольку лучше иллюстрирует закономерность варьирования признака.

Частоты, характеризующие ранжированный вариационный ряд, можно складывать, или накапливать. Накопленные частоты получаются последовательным суммированием значений частот от первой частоты до последней.

В качестве примера вновь обратимся к ряду 3.3. Преобразуем его в ряд 3.4 в котором введем дополнительную строчку и назовем ее «кумуляты частот».

Варианты Хi (3.4)
Частоты fi
Кумуляты частот

Рассмотрим подробно, как получилась последняя строчка. В начале ряда частот стоит 1. В кумулятивном ряду на втором месте стоит 2 — это сумма первой и второй частоты, т.е. 1 + 1, на третьем месте стоит 4 это сумма второй (уже накопленной частоты) и третьей частоты, т.е. 2 + 2, на четвертом 8 = 4 + 4 и т.д.

Наши рекомендации