Подсистемы программного обеспечения АСУ.
Программное обеспечение (ПО) делят на базовое и специальное. Базовое обеспечение поставляется вместе с ЭВМ и не зависит от специфики объекта управления. Основа ПО – операционные системы. Специальное обеспечение учитывает особенности объекта. Для энергосистем включают все программы анализа стационарных и переходных режимов: программы расчета стационарных режимов (в них реализуются итеративные методы Зейделя, Ньютона и др., безъитеративные – исключения, Гаусса, разложения Y, обращения матрицы Y.) Сегодня эксплуатируются системы любой сложности. Наибольшей популярностью является программа РАСТР (УПП + АО Свердловэнерго) – многофункциональная, позволяет минимизировать потери, позволяет получить эквиваленты отдельных районных систем, имеет современный графический интерфейс, отличается надежной сходимостью.
Программа расчета токов короткого замыкания: позволяет учитывать и активное сопротивление (полное комплексное сопротивление), изменение углов (качание), учитывать несимметричное нарушение, используется для проверки аппаратуры и выбору уставок.
Программа анализа устойчивости при переходных процессах (статической и динамической).
Программы оптимизации на уровне ОДУ (объединенное диспетчерское управление). Они позволяют определять оптимальную выработку крупных станций и обменные потоки мощности между системами. На уровне электрических сетей позволяют при заданных так называемых сольдоперетоках планировать выработку энергии на станциях. В электрических сетях и ПЭС используются программы оптимизации по критерию минимума потерь. Здесь в основном определяются реактивные мощности источников и коэффициенты трансформации АТ с учетом ограничений. В распределительных сетях ПЭС используются программы оптимизации путем выбора рациональных схем размыкания контуров в сетях. Корме того используются и другие программы: по планированию ремонтов и др.
Общее количество программ в АСУ электрических систем достигает нескольких сотен.
Особое место занимают программы проверки достоверности информации, поставляемые для оперативного персонала. Для первичной обработки ТИ с целью выявления ложных измерений из-за неисправности канала или из-за различных шумов и помех используются методы фильтрации (математические фильтры). Простейшим фильтр – пороговый. Если мы рассматриваем xt – измерение, пришедшее от УТМ, yt – отфильтрованное (более достоверное) измерение, то
xmin, xmax – предельно возможный диапазон изменения параметров.
Пример: 95 кВ £ Ut £ 130 кВ при (UНОМ = 110 кВ).
Более сложной является линейная фильтрация. В ней любой параметр:
Dt – цикл опроса.
a, b, k, N определяют модификацией фильтров.
,
где b – коэффициент доверия ТИ (если канал хорошо работает, то b = 0,9 иначе b » 0,5).
Для анализа отфильтрованной информации и проверки достоверности используется различные физические соотношения или формулы электрических цепей, балансы и т.п.
t1 > t2 > t3
Если нет избыточности информации, то нельзя полностью доверять датчиками. Те измерения, которые получены расчетом на основе поступивших ТИ, называют “псевдоизмерениями”.
Для проверки достоверности может использоваться информация по ТИ и ТС.
Если в ЛЭП известны U, P, Q и ТС.
Одной из наиболее сложных задач проверки является задача оценки состояния. Чаще всего процесс заключается в оценке узловых нагрузок (X). На основе полученных ТИ (YТИ).
ИОАСУ “Энергия”
Интегрированная отраслевая АСУ “Энергия”– система, которая разрабатывалась с 70-х годов в Минэнерго для автоматизации управления отраслью. Система включает:
1) Планирование развития – предназначено для поиска наилучших вариантов развития на основе использования современных экономико-математических методов и техники, т.е. САПР. Реализуется в проектных организациях Минэнерго.
2) Планирование и управление хозяйственной деятельностью, включая ближайшее планирование, т.е. материально-техническое снабжение, финансовые потоки: бухгалтерия, кадры и т.д.
3) АСДУ – предназначено для управления текущим режимом (Real Time) и планирование на ближайшую перспективу.
4) Повышение квалификации и подготовка кадров, тренаж и обучение. После 1986 года стало уделяться большое внимание повышению квалификации персонала.
АСДУ предназначено для организации согласованной работы всех устройств, связанных с обеспечением нормальной работы, включая основные регуляторы, РЗ и противоаварийную автоматику, а также оперативный персонал. Источником информации для управления является УТМ и линии связи. Основу АСДУ составляет ОИК – оперативно-информационный комплекс, связанный со сбором, передачей, хранением информации. Работа ОИК обеспечивается специальными программами. Существует несколько разработчиков и типов ПО. На Урале находи применение ОИК “Диспетчер” фирмы “Интерфейс”, ОИК КИО – комплекс информационного обеспечения разработанный АО Свердловэнерго. КИО – 3 работает в операционной среде MS DOS.
Структура КИО-3:
МК – мостовой компьютер,
ФС – файл-сервер,
ЦК – циклический компьютер,
РС – рабочие станции,
ДЩ – диспетчерский щит,
БУЩ – блок управления щитом.
Вся информация от УТМ поступает в МК, где осуществляется первичная обработка информации: фильтрация, проверка достоверности. Организуются архивирование данных, работа сигнальной системы и другие функции. К МК могут подключаться различные УТМ: ГРАНИТ, КОМПАС, УКТУС, ТМ-512, RPT и др. со стандартным выходом RS-232, RS-485 и др.
Файл-сервер – это устройство для хранения (мощный компьютер) ПО и информации доступной для всех объектов локальной сети.
ЦК предназначен для решения больших задач.
РС (до нескольких сотен) размещают в разных службах, предназначены для принятия решений на основе анализа текущей информации, выполнения каких-либо расчетов и разработки форм, программ и т.д. Часть РС оснащается сигнальной системой, которая запускается по факту появления какого-либо события, например работы РЗ и ПА. На РС информация о режиме представляется в наиболее наглядной форме. Представление информации должно соответствовать требованиям эргономики, определяющей наиболее приемлемые для человека объемы информации, цвета; размещается информации на экране. Число экранных страниц может достигать нескольких сотен. Таким образом, обеспечивается практически безбумажная технология информационного обеспечения оперативного персонала. Часть информации выдается на ДЩ – это основной объем ТС, в основном положения выключателей, а часть - на экранные страницы – расчет технико-экономических показателей или основные ТИ.
АСУ ТП ТЭС.
Управление режимом ТЭС осуществляет дежурный инженер, который подчиняется диспетчеру АО Энерго и управляет работой оперативного персонала блоков и отдельных механизмов С.Н., которые размещаются на БЩУ или местных ЩИТАХ. В соответствие с этой структурой строится и система автоматизации управления. Здесь имеется общестанционный уровень (ОВК – общестанционный вычислительный комплекс) и уровни отдельных блоков (ПВК – хххххххххх ВК). Источники информации – датчики технологических параметров (тепловая часть) и электрических, а также, положение аппаратов с двумя устойчивыми состояниями. ТМ здесь в полной мере не используется. ТМ используется только для выдачи информации диспетчеру электростанции (энергосистемы).
При управлении ИВК могут использовать в различных режимах:
1) режим советчика
Здесь U – управляющее воздействие.
2) супервизор (надсмотрщик)
ИВК используется:
может менять уставки регуляторов yi и параметры настройки. Решения принимаются на основе анализа.
3) цифровое управление:
ЛПР принимает решение на основе знаний технологического процесса, опыта и информации.
ИВК принимает решение только на основе математических моделей. На ТЭС реализованы функционально-групповое управление, т.е. комплексное управление группой объектов, выполняющих различные функции.
Котел:
– подача топлива, где согласуется работа подачи сырого угля, мельницы, формирования пылевоздушной смеси и подача её в горелки;
– подача воды: питательные насосы ПН, конденсационные насосы КН, деаэратор, насос химически чистой воды;
– подача воздуха: воздухоподогреватель, дутьевые вентиляторы и т.п.
Синхронный генератор:
– система возбуждения (СВ): трансформатор, тиристоры, охлаждение тиристоров, регулятор возбуждения;
– система охлаждения генератора:
а) водяное: подготовка дистиллята, насосы, система контроля утечки, температуры на входе и выходе, устройство охлаждения нагретой воды.
Для контроля отдельных групп могут использоваться различные технические средства и программы. Например, для водяного охлаждения обмоток статора используется система “Нептун”, включающая сотни датчиков температуры, установленных в каждом стержне обмотки. Эти датчики опрашиваются с цикличностью в несколько секунд и контролируются компьютером. При обнаружении превышения температуры вырабатывается звуковой сигнал.
Аналогичная система действует для контроля работы подшипников.
Функции АСУ ТП на ТЭС:
1. сбор информации о параметрах технологического процесса, проверка достоверности и исправности датчиков и связей их с ЭВМ;
2. контроль параметров технологического процесса и сигнализация о выходе за допустимую область или решительном приближении к ней;
3. определение технико-экономических показателей (ТЭП) и ведение ведомости с циклом Dt = 15 мин, считаются удельные расходы, расходы на С.Н. тепла и электроэнергии с итогом по вахтам, суткам до месяца;
4. контроль за экономичностью работы отдельных агрегатов С.Н.;
5. оценка ресурса паропроводов, экранных трубок котла и других элементов. Для оценки ресурса используется информация о температуре;
6. по электрической части: контроль за работой электрической части системы возбуждения, нагрузки по активной и реактивной мощностям генератора;
7. контроль за системой охлаждения обмоток, контроль работы подшипников;
8. контроль частичных разрядов изоляции (осуществляется с помощью датчиков температуры путем контроля высокочастотных сигналов.
На разных ТЭС по инициативе персонала реализуются и другие функции. Например на ТЭЦ-3 в электрической части разработана система по контролю за сборкой схемы блока.
На общестанционном уровне АСУ ТП контролирует работу ОРУ, РУ СН, при этом:
1. отрабатываются бланки переключений;
2. контролируется ресурс выключателей в зависимости от величины тока отключения;
3. оптимизируется распределение нагрузки между блоками;
4. планирование ремонтов;
5. ведение ведомостей ТЭП в целом по станции;
6. контроль за работой общестанционных цехов (хим-водоочистка, топливо-подача и т.п.)
Сегодня используются разные схемы АСУ ТП. В эксплуатации находятся еще первые системы ИВ-500 на блоках 500 МВт (Троицкая ГРЭС), отечественный двухмашинный комплекс на базе СМ.
В настоящее время появилось много поставщиков систем АСУ ТП, в том числе заграничных фирм. Сегодня предпочтение отдается отечественным разработкам. Наиболее продвинутые системы поставляются фирмой КОСМОТРОНИКА (Сургутская ГРЭС, Нижневартовская ГРЭС, Пермская ГРЭС). В системе выполняются функции контроля пуска блоков с автоматизацией некоторых функций, функции оптимизации работы отдельных механизмов С.Н., функции экологического контроля и т.п. Контроль за пуском позволяет сократить время пуска при сохранении допустимых температур напряжений в металле.
АСУ ПЭС
Используется принципиальная схема, как и для электростанций. Источником информации являются УТМ. Среди объектов отсутствует ЭС. УТМ устанавливаются на подстанциях. На важнейших подстанциях – устройства типа ГРАНИТ, на простых – более простые устройства. ОИК обслуживается таким же программным обеспечением, что и в ЭС. Здесь решается специфические для сетей задачи:
– анализ режима (стационарного, расчет токов КЗ, планирование режимов). При этом осуществляется контроль фактического состояния оборудования, учитывающий ресурсы выключателей с учетом контроля нагрева оборудования с помощью тепловизоров;
– задачи оптимизации режима по минимуму потерь в сети;
– задачи контроля достоверности информации, проверки параметров на допустимость.
АСУ ТП подстанций.
Автоматизация их производится в последнюю очередь. Есть несколько путей для автоматизации:
1. Применяется на системных подстанциях, где устанавливается КП УТМ, а для информирования персонала оставлены старые технические средства, т.е. стрелочные приборы. Здесь с помощью специальной техники можно “подслушать” информационную шину и всю информацию ввести в компьютер. Это путь не получил большого распространения.
2. Для создания АСУ ТП подстанций могут использоваться регистраторы электрических сигналов типа “Нева”. Основа регистраторов – блок регистрации и контроля нормальных и аварийных режимов и учета электроэнергии. Этот регистратор позволяет подключать от 16 до 64 сигналов для осциллографирования при сканировании 20-ти точек на период. От 32 до 96 замеряемых действующих значений от преобразователей типа E. От 24 до 288 дискретных сигналов от блок-контактов выключателей, от промежуточных и выходных реле релейной защиты. Дискретные входы могут использоваться и для учета электроэнергии как счетчики импульсов. Это позволяет подключать электронные счетчики с импульсным выходом и индукционные, если они достроены устройством формирования импульсов (УФИ). Регистратор связан с компьютером и через модем информация может передаваться на диспетчерский пункт энергосистемы. Используются средства графического редактирования. Специфические задачи – проверка баланса мощности и энергии, определяется ТЭП, т.е. потерь технических и коммерческих, затрат на обслуживание и себестоимости передачи, или преобразования единицы электрической энергии. Задачи автоматизации регулирования напряжения, аварийной статистики.