Общие сведения об измерении температуры

Одним из основных технологических параметров в химическом производстве является температура. Температура — фундаментальная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

Измерение температуры предполагает построение шкалы температур на основе воспроизведения ряда равновесных состояний — реперных точек, которым приписаны определенные значения температур, и создания интерполяционных приборов, реализующих шкалу между ними.

Чаще всего используются три температурные шкалы: эмпирические шкалы Цельсия и Фаренгейта и термодинамическая шкала Кельвина. Наиболее употребляемая температурная шкала была предложена А. Цельсием (A. Celsius) в 1742 г. Опорными точками этой шкалы являются температура плавления льда (О °С) и температура кипения воды (100 °С). Первая температурная шкала была введена Г. Фаренгейтом (G. Fahrenheit) в 1715 г. Для нижней опорной точки (0 °F) была использована температура замерзания солевого раствора, а для верхней — температура под мышкой здорового англичанина (96 °F). В 1848 г. лорд Кельвин (У. Томсон) предложил термодинамическую температурную шкалу, основанную на втором законе термодинамики. Термодинамическую температуру («абсолютную температуру») обозначают символом Т. Единицей ее измерения является кельвин (К), определенный как 1/273,16 часть термодинамической температуры тройной точки воды.

Приборы для измерения температуры называют термометрами. Различают контактный и бесконтактный методы измерения температуры.

На рис. 57 выполнено ориентировочное сравнение областей применения термометров наиболее распространенных типов. Естественно, что границы этих областей у различных изготовителей неодинаковы. В ближайшее время предельные температуры применения термометров, особенно электрических, могут быть смещены как в сторону более высоких, так и в сторону низких температур. Штриховыми линиями на рис. 57 показаны области температур, в которых термометры используются только кратковременно.

Общие сведения об измерении температуры - student2.ru

Рис. 57. Сравнение температурных диапазонов контактных и бесконтактных термометров

Измерение температуры контактным методом

Общие сведения об измерении температуры - student2.ru

Рис. 5.58. Область применения контактных и бесконтактных термометров:

1 — термисторы; 2 — пьезоэлектрические; 3 — термопреобразователи сопротивления; 4 — термоэлектрические преобразователи (термопары)

При использовании контактного метода измерения температуры определяют величину одного из параметров первичного измерительного преобразователя (ПИП), зависящего от его температуры. При этом предполагают, что температура ПИП равна температуре измеряемого объекта, которую хотели бы измерить. Для выполнения этого условия необходимо обеспечить хороший тепловой контакт между ПИП и измеряемым объектом, что и дало название методу измерения.

К контактному методу относится измерение температуры термометрами расширения, манометрическими термометрами, термометрами сопротивления, термоэлектрическими термометрами.

Температурные диапазоны применения наиболее распространенных контактных термометров представлены на рис. 5.58.

Термометры расширения

Принцип действия термометров расширения основан на различном тепловом расширении двух разных веществ. К термометрам расширения относят стеклянные жидкостные, дилатометрические, биметаллические, манометрические.

Наши рекомендации