Формула Тейлора для дифференцируемых функций.
Если функция f(x) n раз дифференцируема в точке а, то для нее существует многочлен - это многочлен Тейлора n-го порядка функции f(x) в точке a. Обозначим за - на сколько многочлен отличается от самой функции. называют остаточным членом. Нужно доказать, что для «хороших» функций будет достаточно мало. Докажем теорему, которую сформулируем в конце. =))
Рассмотрим функцию f; зафиксируем точку a, в которой будем раскладывать функцию, и произвольную точку x, такую что f(x) n-1 раз дифференцируема на [a,x] и n раз дифференцируема на (a,x). В точке а функция дифференцируема n-1 раз, значит для нее можно составить многочлен Тейлора n-1 порядка.
Представим в виде: , где р – произвольное число, H – некоторая функция, зависящая от x.
Рассмотрим функцию :
Рассмотрим F(u) на [a,x]: F(u) непрерывная на [a,x], дифференцируема на (a,x), F(x)=F(a) по теореме Ролля
; продифференцируем:
- и почти все взаимно уничтожается.
, тогда
; Подставим теперь p:=n;
- это остаточный член в форме Лагранжа. Подставим теперь p:=1
- это остаточный член в форме Коши.
Рассмотрим форму Лагранжа:
Пусть теперь f имеет непрерывную n-ю производную в точке а. Это означает, что на [a,x) функция n раз дифференцируема. Значит f(x) можно представить в виде:
;
, т.к. производная непрерывна. Тогда можно представить в виде:
;
- это формула Тейлора с остаточным членом в форме Пеано.
Таким образом, мы доказали следующую теорему:
Теорема
Если функция n-1 раз дифференцируема на [a,x], n раз на (a,x), то она раскладывается по формуле Тейлора с остаточными членами в форме Лагранжа и Коши. Если функция f(x) имеет непрерывную n-ю производную в точке а, то в окрестности точки а она раскладывается по формуле Тейлора с остаточными членами в форме Лагранжа, Коши и Пеано.
Теорема (о единственности разложения функции по формуле Тейлора в форме Пеано)
Если , то , - коэффициенты из формулы Тейлора. Т.е. если есть какие-то другие коэффициенты , то они тоже есть коэффициенты из формулы Тейлора:
Доказательство.
Устремим , получим, что , т.к. ; тогда
сократив на , получим:
и опять же если .
И так мы можем проделать до n-го коэффициента. Теорема доказана.
Билет 19
Формула Тейлора для важнейших элементарных функций.
Общий вид формулы Тейлора для функций:
, где - остаточный член.
При получаем так называемую формулу Маклорена.
Формула Тейлора для важнейших элементарных функций:
1) ,
, , . Отсюда получаем, что
. ,
, где . И в итоге имеем: , , .
Пример:
Пусть , тогда получим:
, .
2) ,
Поскольку , , формула имеет вид: , где n – нечётное число, а остаточный член в форме Лагранжа равен , .
Очевидно, что для остаточного члена справедлива следующая оценка: .
3) ,
Поскольку , то
, ,
, , .
4) ,
, , , ,
,
, при ,
Рассмотрим остаточный член в форме Коши:
, , ,
, где , и .
5) ,
, , ,
,
Остаточный член в форме Пеано.
Билет 20