Уравнение поверхности уровня
Поверхностью уровня называют такую поверхность, во всех точках которой давление одинаково (dP=0)
то, с учетом уравнение Эйлера:
для поверхности уровня:
В случае идеальной жидкости:
Пример:
Пусть жидкость покоится в поле тяготения 3емли.
Плоскость 0XY горизонтальна, а ось z направлена вертикально вверх. В этом случае:
Тогда:
т.е. z=const, т.о. поверхности уровня (в частности, свободная поверхность) горизонтальны.
ЗАКОН ПАСКАЛЯ
Жидкость покоится в поле тяготения Земли. В этом случае уравнения Эйлера имеют вид:
(282)
(283)
( 284)
С учетом (282) и (283) последнее уравнение (284) принимает вид:
(285)
откуда:
(286)
где удельный вес жидкости. Интегрируя (286), получаем
(287)
Постоянная интегрирования будет определена, если в точке с координатой z0 известно давление p0 . Тогда
Последнее выражение обычно записывают в виде:
(288) т.е. для жидкости, покоящейся в поле тяготения Земли, сумма геометрической (Z) и пьезометрической (p/g)) высот для всех точек объема жидкости одинакова. Это и есть закон Паскаля.
СООБЩАЮЩИЕСЯ СОСУДЫ ЗАПОЛНЕНЫ ОДНОРОДНОЙ ЖИДКОСТЬЮ
Свободные поверхности в левом и правом коленах находятся на уровнях Z1 и Z2, а давление на этих поверхностях равно атмосферному Рa. Сравним свободные поверхности с общей для обоих сосудов частью, уровнем Z0, на котором давление равно P0, как показано на рис. 71.
Откуда:
(рис. 71)
Следовательно, свободные поверхности устанавливаются на одном уровне.
ЗАКОН АРХИМЕДА
Тело погружено в жидкость (рис. 73).
Рис.73.
На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
Равнодействующая сил давления в проекции на вертикальную ось равна:
где: dS - проекция dS1 (или dS2) на горизонтальную плоскость. Разность давлений по закону Паскаля равна
где: dZ - разность уровней центров граней выделенного объема. Тогда равнодействующая сил давления равна
где dV - величина выделенного объема.
Вертикальная проекция сил давления, действующих на всю смоченную поверхность тела, может быть получена путем интегрирования предыдущего выражения:
т.е. сила, действующая со стороны жидкости на погруженное в нее тело по величине равна весу жидкости, вытесненной телом.
Формулировка закона: на тело, погруженное в жидкость действует выталкивающая сила, равная весу жидкости в объеме, вытесненном телом , и приложенная в той точке смоченной поверхности тела, в которой вертикаль, проведенная через центр масс вытесненной жидкости, пересекает эту поверхность.
Существенным в формулировке закона Архимеда является правильное указание точки приложения выталкивающей силы. Действительно, поскольку сила Архимеда обусловлена действием распределенных по поверхности сил давления со стороны жидкости, то и равнодействующая сил давления должна быть приложена к смоченной поверхности тела (но не к центру масс вытесненной жидкости, как это часто утверждается). Кроме того, наличие в плавающем теле деформаций можно объяснить только при таком рассмотрении силы Архимеда.