Справочные и управляющие команды и функции
MATLAB
Одна из сфер применений персонального компьютера, это математические и технические расчеты, т.е. то ради чего компьютеры (от слова: computer- вычисление) создавались.
Разработаны мощные, универсальные, простые в применении интегрированные системы (пакеты программ) предназначенные для автоматизации автоматических и научных расчетов. Это MachCad, Derive, Machematica, Maple, MATLAB и т.д. Применение этих пакетов требует от пользователя знания математики.
MATLAB является надежной апробированной системой рассчитанной на решение математических задач с представлением данных в матричной форме. Система MATLAB широко распространена в России, в СНГ и за рубежом. MATLAB был разработан C.В.Молером ( в 1970 гг), вначале использовался на больших ЭВМ, затем был подработан для персональных компьютеров. MATLAB является расширяемой системой, которую можно приспособить для решения нужного класса задач. Для неё разработаны десятки пакетов расширения – от пакета символьной математики Symbolic до пакета имитационного моделирования блочно заданных систем Simulink.
Круг пользователей системы:
1. инженеры связи, инженеры проектировщики;
2. разработчики новых устройств;
3. студенты, аспиранты, научные работники;
4. физики, математики, и т.д..
Система может применяться в любой области науки и техники, содержит удобные средства для электро и радиотехнических расчетов, т.е. позволяет производить операции с комплексными числами, матрицами, векторами и полиномами, обрабатывать данные, анализировать сигналы, производить цифровую фильтрацию. MATLAB – MATrixLABoratory (матричная лаборатория). Система MATLAB может использоваться для арифметических и алгебраических действий, а также выполнять действия с матрицами, вычислять собственные значения векторов, решать системы линейных уравнений и т.д.
Основное преимущество системы - это возможность ее модификации и приспосабливания к конкретным задачам пользователя. В MATLAB можно ввести любую новую команду, оператор или функцию.
Система MATLAB имеет входной язык, напоминающий Basic, но не использует объявления. Базовый набор слов:
§ специальные знаки;
§ знаки арифметических и логических операций;
§ арифметические, алгебраические, тригонометрические и некоторые специальные функции;
§ векторные и матричные функции;
§ функции быстрого преобразования Фурье;
§ операторы построения графиков в декартовой и полярной системах координат;
§ операторы построения трехмерных поверхностей.
Графики выводятся отдельно от текста. Система позволяет редактировать текст программ с помощью любого текстового редактора.
Запуск системы MATLAB
Для MATLAB 7:
Для MATLAB 4: Загрузочный файл MATLAB \ bin \ MATLAB-s.exe
или в Главном меню Windows: Пуск } Программы } MATLAB for Windows } MATLAB with SIMULINK
Для MATLAB 5: Загрузочный файл MATLAB \ bin \ MATLAB.exe
или в Главном меню Windows: Пуск } Программы } MATLAB } MATLAB
Справочные и управляющие команды и функции
demo – команда, выводящая на экран список демонстрационных программ.
Например:
demo MATLAB
demo toolbox signal
demo matlab graphics
info - выводит на экран ссылку на сайт производителя системы MATLAB.
ver - выводит номера версий: операционной системы, системы MATLAB, пакетов расширения системы MATLAB.
help - выводит справку о командах и функции системы.
Команды управления окном
Полезно сразу усвоить некоторые команды управления окном командного режима:
clс — очищает экран и размещает курсор в левом верхнем углу пустого экрана.
home — возвращает курсор в левый верхний угол окна.
Режим прямых вычислений (функции калькулятора)
Работа с системой в режиме прямых вычислений носит диалоговый характер и происходит по правилу «задал вопрос, получил ответ». Пользователь набирает на клавиатуре вычисляемое выражение, редактирует его (если нужно) в командной строке и завершает ввод нажатием клавиши ENTER. При этом:
· для указания места ввода исходных данных система использует символ >>;
· данные вводятся с помощью простейшего строчного редактора;
· для блокировки вывода результата вычислений некоторого выражения после него надо установить знак ; (точка с запятой);
· если не указана переменная для значения результата вычислений, то MATLAB назначает такую переменную с именем ans;
· знаком присваивания является привычный математикам знак равенства =, а не комбинированный знак :=, как во многих других языках программирования и математических системах;
· результат вычислений выводится в строках вывода (без знака »);
· встроенные функции (например, sin) записываются строчными буквами, и их аргументы указываются в круглых скобках;
· диалог происходит в стиле «задал вопрос — получил ответ».
Массивы
Одномерный массив чисел называют вектором. Двумерный массив чисел или математических выражений принято называть матрицей.
Примеры:
l, 2, 3, 4 — вектор из 4 элементов;
1 2 3 4
5 6 7 8 матрица размера 3x4;
9 8 7 6
Векторы и матрицы характеризуются размерностью и размером. Размерность определяет структурную организацию массивов в виде строки (размерность 1), страницы (размерность 2), куба (размерность 3) и т. д. Так что вектор является одномерным массивом, а матрица представляет собой двумерный массив с размерностью 2.
Размер вектора — это число его элементов, а размер матрицы определяется числом ее строк т и столбцов п. Обычно размер матрицы указывают как тхп. Матрица называется квадратной, если m = n, то есть число строк матрицы равно числу ее столбцов.
Векторы и матрицы могут иметь имена, например V — вектор или М — матрица.
Операторы системы MATLAB 5
Операторы системы MATLAB делятся на 3 категории:
1. Арифметические операторы - позволяют констрировать арифметические выражение и выполнять числовые вычисление;
2.Операторы отношения - позволяют сравнить числовые операнды;
3.Логические операторы - позволяют строить логические выражения. Логические операторы имеют самый низкий приоритет относительно операторов отношения и арифметических операторов.
Арифметические операторы.
При работе с массивом чисел установлены следующие уровни приоритета среди арифметических операций:
1. поэлементное транспонирование (.’), поэлементное возведение в степень(.^),эрмитово сопряженное транспонирование матрицы (‘),возведение матрицы в степень (^);
2. унарное сложение (+),унарное вычитание (-);
3. умножение массивов (.*),правое деление (./),левое деление массивов (.\),умножение матриц (*),решение систем линейных уравнений - операция (/),операция (\);
4. сложение (+),вычитание (-);
5. оператор формирования массивов (:).
Внутри каждого уровня операторы имеют равный приоритет и вычисляются в порядке следования слева направо. Заданный по умолчанию порядок следования может быть изменен
Логические операторы.
В состав логических операторов системы MATLAB входят следующие операторы:
& И;
| ИЛИ;
~ НЕ;
В дополнение к этим оператором каталог bitfun содержит ряд функций, которые выполняют поразрядные логические операции.
Логические операторы реализуют поэлементное сравнение массивов одинаковых размерностей. Для векторов и прямоугольных массивов оба операнда должны быть одинакового размера, за исключением случая с каждым из них скаляр. В последнем случае MATLAB сравнивает скаляр с каждым элементом другого операнда. Позиции, где это соотношение истинно, получают значение 1, где ложно –0.
Каждому логическому оператору соответствует некоторый набор условий, которые определяют результат логического выражения:
. Логическое выражение с оператором AND(&) является истинным, если оба операнда истинны. Если элементами логического выражения являются числа, то выражение истинно, если оба операнда отличны от нуля.
Пример:
Пусть заданы два числовых вектора:
U=[1 0 2 3 0 5];
V=[5 6 1 0 0 7];
Логическое выражение с оператором AND (&):
U & V
Ans =
1 0 1 0 0 1
Логическое выражение с оператором OR(|) является истинным, если один из операндов или оба операнда логически истинны. Выражение ложно, только если оба операнда логически ложны.
Если элементами логического выражение являются числа, то выражение ложно, если оба операнда равны нулю.
Пример:
Используем вектора u и v, определенные выше, и выполним логическое выражение с оператором OR(|):
U|V
Ans=
1 1 1 1 0 1
Логическое выражение с оператором NOT(~) строит отрицание. Результат логически ложен, если операнд истинен, и истинен, если операнд ложен. Если элементами логического выражения являются числа, то любой операнд, отличен от нуля, становится нулем, и любой нулевой операнд становится единицей.
Пример:
Используем вектор u, заданный выше, и построим логическое выражение оператором NOT (~):
~u
ans=
0 1 0 0 1 0
Тригонометрические функции
SIN, SIN H-функции синуса.
1) V= sin(z)
2) V=sinh(z)
1. вычисляет sin значений элементов массива z.
2. вычисляет гиперболический sin от значений элементов массива z углы измеряются в радианах.
1). V= asin(z)
2). V= asinh(z)
1. вычисляет обратную функцию sin от значений элементов массива z.
2.вычисляет обратную функцию гиперболического sin от значений элементов массива z углы измеряются в радианах.
CSC, CSCH-функции косеканса.
1). V=csc(z)
2). V=csch(z)
1. вычисляет косеканс от значений элементов массива z.
2. вычисляет гиперболический косеканс от значений элемента массива z.
COS, COSH- функции косинуса.
1) V= cos(z)
2) V= cosh(z)
1.вычисляет cos от значений элементов массива z.
2. вычисляет гиперболический cos от значений элементов массива z.
TAN, TANH- функции тангенса.
1) V= tan(z)
2) V=tanh)(z)
1. выселяет тангенс от значений элементов массива z.
2. вычисляет гиперболический тангенс от значений элементов массива z.
Матричные функции
Характеристика матриц
NORM- нормы векторов и матриц. Синтаксис: 1. n=norm(v,p)- вычисляет p- нормы вектора V.
RANK- матрицы p r=rank(A) эта функция возвращает rank- матрицы.
DET- определитель матрицы d=det(A)- эта функция вычисляет определитель квадратной матрицы; если матрица целочисленная, то результатом является целое число.
TRIU-формирование верхней матрицы (массива).
1) u=triu (x)
2) u=triu (x, k)
1)-сохраняет часть матрицы (массива) Х.
2)-сохраняет часть матрицы (массива) Х начиная с диагонали с № К
при К>0 это № К-ой верхней диагонали.
при К<0 это № К-ой нижней диагонали
FLIRLR-поворот матрицы относительно вертикальной оси.
B=flipir (A)
Это функция переставляет столбцы матрицы А симметрично относительно вертикальной оси. Если матрица А имеет нечетное число столбцов, то средний столбец остается на своем месте.
FLIPUD-поворот матрицы относительно горизонтальной оси.
B=flipud (A)
Это функция переставляет строки матрицы А симметрично относительно горизонтальной оси. Если матрица А имеет нечетное число строк, то средняя строка остается на своем месте
ROT 90-поворот матрицы на 90 градусов.
1. B=rot 90(A)
2. B=rot 90(A,K)
3. -осуществляет поворот матрицы А размером M*N на 90 градусов против часовой стрелки.
-это функция поворачивает матрицу А размером M*N yf 90 градусов против часовой стрелки 90*, К=+_1;+_2
Операции над матрицами.
DIAG-формирование или извлечение диагоналей матрицы.
x=diag (v)
x=diag (v, k)
v=diag (x)
v=diag (x, k)
1. формирует квадратную матрицу Х с вектором v на главной диагонали.
2. Формирует матрицу Х с вектором u на К-ой диагонали.
3. Извлекает из матрицы Х главную диагональ.
4. Извлекает из матрицы Х квадратную диагональ
при К>0, это номер К-ой верхней диагонали
при К<0, это номер К-ой нижней диагонали .
TRIL-формирование нижней матрицы.
L=tril (x)
L=tril (x, k)
-
1.сохраняет нижнюю часть матрицы Х
2.сохраняет нижнюю часть матрицы Х начиная с диагонали с № К
при К>0, № К-ой верхней диагонали,
при К<0, № К-ой нижней диагонали.
Решение систем линейных уравнений
\, /- решатели систем линейных уравнений
Синтаксис: x=B\A- эта функция находит решение системы уравнений вида AX=B, где а- прямоугольная матрица размера nxn.
Графические команды и функции
Элементы графической функции системы MATLAB позволяют построить на экране и вывести на печатающее устройство следующие типы графиков:
1. Линейный
2. Логарифмический
3. Полулогарифмический
4. Полярный
Для каждого графика можно задать заголовок нанести обозначение осей, а также масштабную сетку.
Двумерные графики
1. PLOT- график в линейном масштабе. Синтаксис:
1 plot(y)
2 plot(x;y)
3 plot(x,y,s)
4 plot(x,y,s,x2,y2,s2,...)
1. строит график элементов одномерного массива у в зависимости от номера элемента.
2. соответствует построению обычной функции если одномерный массив х соответствует значениям аргумента, одномерный массив у значениям функции.
3. позволяет выделить график функции указов способ отображения линии, способ отображения точек, цвет линий и точек с помощью строковой переменной S, которая может включать до 3х символов из:
Тип линии: |
- непрерывная - - штриховая : двойной пунктир -. штрих пунктирная |
Тип точки: |
.точка + плюс *звездочка окружок хкрестик |
Цвет |
y желтый m фиолетовый cголубой rкрасный g зеленый b синий wбелый kчерный |
4. позволяет обьеденить на одном графике несколько функций y1(x1), y2(x2)...
Определив для каждой из них свой способ отаброжения.
2. LOGLOG- график в логшарифмическом маштабе.
Синтаксис: 1. loglog (x, y)
2. loglog (x, y, s)
3. loglog (x, y, s, x1,y1, s1...)
Эти комманды анологичны функциям PLOT но используют по обеим осям логорифмический маштаб вместо линейного.
3. SEMILOGX- Синтаксис (график в полулогорифмическом маштабе):
semilogx(x, y)
semilogx(x, y, s)
semilogx(x, y, s, x2, y2, s2...)
4. SEMILOGY semilogy(x, y)
semilogy(x, y, s)
semilogy(x, y, s, x1, y2, s2...)
semilogx- использует логарифмический маштаб по оси х и линейный маштаб по оси у.
semilogy- использует логарифмический маштаб по оси у и линейный маштаб по оси х
5. POLAR- график в полярных координатах:
polar(phi, rho)
polar(phi, rho, s)
Эти комманды реализуют построение графиков в полярных координатах задаваемых углом phi и радиусом rho.
под блоков массива.
% является указателем а) логич. конца строки, т.е. текст следуюший за этим символом игнорируется б) указывает на строки комментария.
! является указателем ввода комманды dos
Ans результат выполнений последней операции.
I или - мнимая единица , константа и j первоначально присвоив. значение равное
( )=sqrt (-1). Они использ. для ввода компл. чисел.
Pi- число p:п=3.14
МАТЕМАТИЧЕСКИЕ ФУНКЦИИ.
В ик-ме MATLAB имеется библиотека математ.фун-й. В каждой фун-ции соответ-ет определ-е имя.Фун-я ставит в соответствие от значения своих аргументов, значение результата. А ргументы функций указываются в круг. скобках после имени функции, если их больше одной разделяются запятыми. В качестве аргумента можно использ. др. функции и любы выраженея языка MATLAB.
ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ.
Это обычно фун-и от одной переменной . Имя переменной к которой присвоив. значение функции распол. слева от знака равенства, если значения переменной (присваиваемой) не указыв. значение ф-и присваив-е служеб. переменной ans. Тип результата вычесления мат. функции совпадает с типом ее аргумента.
Abs.Синтаксис: у=abs (x)- абсолютное значение.Для массива действит. чисел х функция y=abs (x) возвращает массив у абсолютных значений элементов х. Для строковой переменной S (y=abs (s)) функция у=abs(x) возвращает вместо символов , включая пробелы их ABSCII- коды.
ANGLE аргумент комплексного числа . Синтаксис: P=angle (z). Для массива комплексных чисел Z эта функция возвращает
массив значений аргументов для элементов Z.
Для вычисления аргумента комплек. числа использ. след. соотношение:
angle (z)= atan 2 ( imag(z) , real (z)).
REAL Синтаксис : x=real (z) действит.и мни-
Imag Синтаксис: x=imag(z) мая части комплексного числа .Для массивов комплексных чисел z функция x=reab (z) возвращает массив действ. чисел, а x=imag(z) - массив мнимыхчастой элементов z.
SING Син.: s=sing (z) вычисление знака числа.
Для массива действю чисел х - эта функция возвращает массив S тех не размеров на месте положит. числа стоит 1, на месте отрицат. числа - -1 , на месте нулевого -0. Для массива комплек. чисел Z - эта функция возвращает массив комплек. чисел:
S= Z./ abs (z) , модуль к-рых равен 1.
ЭЛЕМЕНТЫ ОТЛАДКИ
DBSTOP Установить контрольную точку.Синтаксис: abstop in^2 имя М-файла>- позволяет задать режим отладки М- функции.Останавливает исполнение процедуры ипозволяет пользователю проверить любую локальную переменную и выполнить любую комманду.dbstop at <номер строки> in <имя Ф М-функции>.Устанавливает контрольную точку в заданной строке М файла.
dbstop if error
dbstop if naninf
dbstop if infnan
Устанавливают контр. точку по условию связанному с возникновением ошибки при исполнении модуля или при появлении результата nan или inf. Как только условие контр. точки выполняется на мониторе появляется спец. приглашение K>> для ввода комманды системы MATLAB.
DBCLEAR Удаление контр. точек.Синтаксис: dbclear in <имя функции> удаляет контр. точку в заданной строке определ М функции.
dbclear at <имя функции> in <имя функции> удаляет все контр. точки в данном М файле.
dbclear all in <имя файла>удаляет все контр. точки во всех активных М функциях.
dbclear all удаляет контр. точку перед первым исполняемым оператором данного М файла.
dbclaer if error удаляет контр. точки коммандой if error/
Файлы
В MATLAB особое значение имеют файлы двух типов — с расширениями *.mat и *.m. Первые являются бинарными файлами, представляющими запись сеанса (сессии) работы системы. Вторые представляют собой текстовые файлы, содержащие внешние определения команд и функций системы. Именно к ним относится большая часть команд и функций Toolbox — набор m-файлов стандартного расширения системы, в том числе задаваемых пользователем для решения своих специфических задач.
ТИПЫ М-ФАЙЛОВ
1. М сценарии или М списки
2. М функции
1. Характеристики М сценариев:
а) не допускает вход и выход аргументов
б) оперирует с данными из раб. области
в) предназначен для автоматизации последов-и шаблон. которые нужно выполнять много раз.
2. Характеристики М функции.
а) допускает вход и выход аргументов
б) по умолчанию внутр. переменные явл-ся локальными по отношению к функции
в) предназначена для раскрытия возможностей языка MATLAB, т. е. содержит библиотеки функций а также пакеты прикладных программ.
Структура М файла.
М-файл оформленный в виде функции состоит из следующих компонентов:
1. Строки определения ф-ций. Задают имя, кол-во и порядок следования входных и выходных аргументов
2. Первой строки комментария. Задают и определяет назначение функций. Вывод. на экран с помощью комманд look for или help<имя кат-а>.
3. Комментария, котор. выводится на экран вместе с первой строкой при использовании комманды help<имя функции>.
Тело ф-ции- это програмный код, который реалезует вычисления и присваивает значение выходным аргументам.
Стркутура М-функции.
М-ф-ция включает след. компоненты:
1. Строки определения ф-ции, котор. сообщают системе MATLAB, что файл является М-ф-цией,а также определяет список входных аргументов. Ключевое слово определения ф-ла как М-ф-ции- funktion. Если функция имеет более одного выходного аргумента список выходных аргументов помещается в квадратные скобки.
Если есть входные аргументы, то они помещаются в круглые скобки. Для отделения аргументов используются запятые.
2. Первая строка комментария. Начинается с символа % содержит текст комментария, в который обычно включается назначение ф-ции. Перв. строка текста появляется при наборе help funktion name.
3. Комментарий. Для М-файла можно создать on line подсказку вводя комментарии в более чем в одной строке. Тогда при вводе комманды help<имя ф-и> система MATLAB отображает комментарий, размещенный между строкой опред. фун-и и первой пустой строкой.
4. Оглавление каталога. Можно создать ком-й для целого каталога. Если создать файл с именем contents. m, который должен содержать только строки комментариев. Содержимое этого файла вывод-ся по комманде help<имя каталога>.
5. Тело функции, содержит программу на языке MATLAB, который выполняет вычисления и присваивает значение выходным аргументам. Операторы в теле ф-ции могут состоять из вызовов функции.
Имена М-функций.
Содержат ограничения имен переменных:
длина их не должна превышать 31 символа.
Единичная матрица.
DBSTEP Выполнить одну или несколько строк программы в режиме отладки.
Синтаксис: 1) dbstep
2) db step <количество строк>
3) db step in
1) допускают построчное исполнение М-ф информации 2)допускает исполнение сразу несколько строк 3)позволяет исполнить строку,
в к-рой присутствует вызов другой М-функции
DBCONT продолжить выполнение .Синтаксиса:dbcjnt
вызывает исполнение М-функций до следушей контрольной
точки установленной командой
dbstop или dbstep .
DBTIPE текстом М функции суказанием номеров
строк синтаксис:dbtype <имя функции>
dbtype <имя M-ф-и> <начало> <конец>
2 комманда позволяет ввести текст М-ф-и с указанием номеров строки. Для вывода части текста нужно указать диапозон выводимых номеров строк. Для вывода одной строки указать ее номер.
DBQUITE Выход из режима отладки. Синтаксис: dbquite. Эта комманда прекращает режим отладки и возвращает управление базисному модулю. Исполнение текущего М ф-а прерывается. Результаты не возвр.
ВРЕМЯ И ДАТЫ
Функции для обработки времени и дат.
Время и now текущее время и дата в файле
даты date текущая дата в форме строки
clock текущее время и дата в ф-и
Преобра date num перевести в N порядковой стр.
зование date str строковое представление даты
date vec векторное представление даты
Утили calendar календарь
ты weekday день недели
eamday последний день месяца
date tick дата с метками времени
Интер cputime время работы центр. процес-ра
валы tic
toc
E time
Задачи:
1) Построить график ф-ции y=sin(x)
z=cos(x)
x=[0;2п]
Задание
1) Вывести матрицу размерами 3 на 3.
2) Протранспронировать матрицу и перевести ее в матрицу В.
Ввести матрицы А и В, получить их сумму и обозначить С.
Программа дискриминанта:
=[1 2 3; 5 4 6; 7 8 9]
A=
>> z=det(A)
z=-49
- обратная матрица
cos
E= положительная гипербола
Е=0 парабола
Е<0- эллипс
Е= min- окруж.
Имена М-функций должны начинаться, остальные символы могут быть любой комбинацией букв. Расширение у М-ф-й -.m.
Если имя ф-ла и имя ф-ции разные, то исполняется имя ф-ла. Внутреннее имя игнорируется, хотя имя функции может не совпадать с именем ф-ла, желательно давать одинаковые имена ф-ям и ф-лам.
ОПЕРАТОР ПЕРЕКЛЮЧЕНИЯ
SWITCH... CASE... OTHERWISE... END
switch<выражение>case<значение1> инструкции otherwise инструкции end
Этот оператор выполняет ветвление в зависимости от значения искомой переменной или выражения.
Оператор переключения включает:
1) Заголовок switch за которым следует выполняемое выражение.
2) Произвольное количество группы case.
Заголовок группы состоит из слова case за которым следует возможное значение выр-я, расположенное на одной строке.
МАТРИЧНОЕ ДЕЛЕНИЕ
Имеется 2 символа матричного деления- левое и правое (\ и /).
X=A\B решение уравнения A*X=B
X=A/B решение уравнения X*A=B
Левое деление, \, определено когда В имеет столько же строк сколько А.
Правое деление, /, может быть определено в виде левого деления В/A=(A\B).
(Инвертированная матрица )
X=B/A
Задача:
Блокнот М-file
% Лабораторная работа 1
A=[5 8 -1; 1 2 1; 2 -3 2]
B=[-7; 1; 9;]
S=B\A
k=0;
for x=1;
k=k+x;
end
n=k
Общее число элементов 5,используют 80 байтов.
Сопутствуещие функции:EXP,LOG,SQRTM.
EXP Экспоненциальная функция
Синтаксис:
V=exp(Z)
Описание:
Функция V=exp(Z) вычесляет экспоненты значений элементов массива Z.
Для комплексных значений z=x+iy справедлива формула Эйлера
e^z=e^x(cos(y)+i sin(y)).
Вычесление экспоненты от матрицы реализовано с помощью специальной функции expm.
Cопутствующие функции: LOG,LOG2,LOG10,EXPM.
LOG Функция натурального логарифма
Cинтаксис:
V=log(Z)
Описание:
Функция V=log(Z) вычесляет натуральный логарифм значений элементов массива Z.
Длякомплексныч значений z=x+iy справедлива формула
ln(z)=ln(abs(z))+i atan2(y,x).
Вычесление функции натурального логарифма от матрицы реализовано с помощью специальной функции logm.
Пример:
Одна из возможностей вычесления значения числа p-это вычислить
log(-1)
log(-1)
ans=
0+3.141592653589793е+000i
Cопутствуещие функции:EXP,LOG2,LOG!0,LOGM.
POW2 Экспонента по основанию 2
Синтаксис:
V=pow2(Z) X=pow2([M,P])
Описание:
Функция V=pow2(Z) вычесляет массив степеней 2.Z.
Функция X=pow2([M,P]) для действительных массивов М и Р вычесляет массив X=M.*(2.P).
Пример:
Для компьютеров с IEEE- арифметикой, в которых определены объекты eps, realmax и realmin, функция x=pow2([m.p]) вычесляет следуещие величины :
m | p | x |
1/2 | ||
pi/4 | pi | |
-3/4 | -3 | |
1/2 | -51 | eps |
1-eps/2 | realmax | |
1/2 | -1021 | realmin |
Cопутствующие функции:LOG2,NEXTPOW2.
NEXTPOW2 Ближайщая степень по основанию 2
Синтаксис:
p=nextpow2(n)
p=nextpow2(x)
Описание:
Функция p=nextpow2(n) возвращает такой показатель степени p, что 2 pіn.
Футкция p=ntxtpow2(x) для одномерного массива х возвращает значение nextpow2(length(x)). Эта операция широко применяется при вычеслении быстрого
преобразования Фурье.
Пример:
Для любого целого числа n в диапазоне от 513 до 1024 функция nextpow2(n) возвращает
значения 10.
Сопутствующие функции:FFT,LOG2,POW2.
LOG2 Функция логарифма
Синтаксис:
V=log2(Z) [M,P]=log2(x)
Описание:
Функция V=log2(Z) вычесляет логарифм пооснованию 2 от значений элементов массива Z.
Функция [M,P]=log2(X) для массива Х действительных чисел возвращает массив М значений мантисс и целочисленный массив P показательстепеней,позволяющих
представить любой элементу соответствует представление {f=0, e=0}.
Примеры:
Для компьютеров с IEEE-арифметикой, в которых определены объекты eps, realmax,realmin,
функция log2 вычесляет следуещие величины:
log2(eps)=-52, log2(realmax)=1024, log2(realmin)=-1022,
а функция [M,P}=log2(X) строет следующие представления чисел
х m p
1 1/2 1
pi pi/4 2
-3 -3/4 2
eps 1/2 -51
realmax 1-eps/2 1021
realmin 1/2 -1021
Сопутствующие функции:LOG2, NEXTPOW2, POW2.
LOG !0 Функция логарифма
Синтаксис:
V=log 10(Z)
Описание:
Функция V=log 10(Z) вычесляет логарифм по основанию 10 от значений элементов массива Z
Примеры:
Для компьютеров с IEEE-арифметикой, в которых определены объекты eps, realmax,
realmin, функция log 10 вычесляет следующие величины:
log 10(eps) log 10(realmax) log 10(realmin)
-15.6536 308.2547 -307.652
Сопутствующие функции: EXP, LOG2, LOGM, POW2.
Тригонометрические функции
SIN, SINH Функции синуса
Синтаксис:
V=sin(Z)
V=sin(Z)
Описание:
Функция V=sin(Z) вычесляет синус от значение элементов массива Z.
Функция V=sinh(Z) вычесляет гиперболический синус от значений элементов массива Z.
Массив Z допускает комплексные значения; углы измераются в радионах.
Для вычесления функции от матрицы следует применять специальные функции funm или
expm.
Алгоритм:
Для вычесления функций синуса используются следуещие соотнощения:
sin(x+iy)=sin(x)ch(y)+icos(x)sh(y);
sh(z)=e^z-e^-z ;
sin(z)=-i sh(iz).
Cопутствующие функции: ASIN, ASIMH, CSC, CSCH, ACSC, ACSCH, EXPM, FUNM.
ASIN, ASINH Функция обратного синуса
Синтаксис:
V=asin(Z)
V+asinh(Z)
Описание:
Функция V=asin(Z) вычесляет обратную функцию синуса от значение элементов массива Z.
Функция V=asinh(Z) вычесляет обратную функцию гиперболического синуса от значений
элемента массива Z.
Массив Z допускает комплексные значения; углы V измеряются в радианах.
Функция Y=asin(X) для действительных значений -1Ј х Ј1 определена в интервале
-p/2Ј x Јp/2.
Для вычисления функций от матрицы следует применять специальную функцию funm.
Алгаритм:
Для вычисления функций обратного синуса используются следующие соотношения :
arsh(z)=ln[z+(1+z^2) ];
arcsin(z)=-i arsh(iz).
Cопутствующие функции
МАТЕМАТИЧЕСКИЕ ФУНКЦИИ
В системе MATLAB имеется обширные библиотека матем-ких функций. Каждой функции соответствует определенное имя. Функция ставит в соответствие значениям своих аргументов значение результата.
Аргументы функции всегда указываются в круглых скобках после имени функции и, если их больше одного, разделяються запятыми. В качестве аргументов могут использоватся другие функции и любые выражения языка MATLAB (при условии соответствия типов аргументов).
Элементарные функции
Элементарная математическая функция-это, как правило, функция от одной переменной, и в этом случае устанавливается соответствие между массивами значений аргумента и результата.
Аргумент указывается в круглых скобках после имени функции. Имя переменной, которой присваивается значения функции, располагаются слева от знака равенства. Если имя присваиваемой переменной не указано, значение функции присваиваетсяслужебной переменной ans.
Тип результата вычесления математической функции всегда соовпадает с типом ее аргумента . Например, если аргументом функции является вектор-столбец, то значением этой функции также будет вектор-столбец.
Рассмотрим встроенные математические функции системы MATLAB, которые применяются к числам, скалярным переменным и к массивам (поэлементно).
Базовые функции
ABS Абсолютное значение
Синтаксис:
Y=abs(X)
Описание:
Для массива действительных чисел Х функции Y=abs(X) возвращает массив Y абсолютных значений элементов Х.
Для массива комплексных чисел Z функция Y=abs(Z) возвращает массив Y модулей комплексных элементов Z.
Для строковой переменной S функция Y=abs(S) возвращает вместо символов, включая пробелы, их ASCII-коды.
Пример:
abs(-5)=5
abs(3+4i)=5
ascii=abs(‘3+41’)
ascii=51 32 43 32 52 105
setstr(ascii)
ans=3+41
Сопутствующие функции: SIGN, ANGLE, REAL, IMAG, SETSTR.
SIGN Вычесления знака числа
Синтаксис:
S=sign(Z)
Описание:
Для массивов действительных чисел S=sign(X) возвращает массив S тех же размеров, в котором на месте положительного числа стоит 1, на месте нулевого-0, на месте отрицательного-
(-1).
Для массивов комплексных чисел Z функция S=sign(Z) возвращает массив комплексных чисел
S=Z./abs(Z), модуль которых равен единице.
Сопутствующие функции: ABS, IMAG, REAL.
FLOOR,
ROUND
Синтаксис:
Y=ceil(X)
Y=fix(X)
Y=floor(X)
Y=round(X)
Описание:
Для массивов действительных чисел Х:
. функция Y=ceil(X) возвращает значения, округленные до ближайшего целого ³ X;
.функция Y=fix(X) возвращает значения с усечением дробной части числа;
.функция Y=floor(X) возвращает значения, округленные до ближайшего целого £ X;
.функция Y=round(X) возвращает значения, округленные до ближайшего целого.
Для массивов комплексных чисел Z эти функции применяются одновременно к действительной и мнимой частям.
Примеры:
Задан одномерный массив действительных чисел
x=[ -1.9 -0.2 3.4 5.6 7.0 ]
ceil(x) [ -1 0 4 6 7 ] fix(x) [ -1 0 3 5 7 ]
floor(x) [ -2 -1 3 5 7 ] round(x) [ -2 0 3 6 7 ]
Сопутствующие функции: CEIL, FIX, FLOOR, ROUND.
REM Функции остатка
Синтаксис:
rem(x, y)
Описание:
Для действительных чисел х и у функция rem(x, y) вычесляет остаток от деления х на у или, в других обозначениях, функцию x(mod)=х-у*n, где n=fix(x/y)-ближайшее целое.
Для массивов чисел это функция применяется поэлементно.
Сопутствующие функции: CEIL, FIX, FLOOR, ROUND.
MATLAB
Одна из сфер применений персонального компьютера, это математические и технические расчеты, т.е. то ради чего компьютеры (от слова: computer- вычисление) создавались.
Разработаны мощные, универсальные, простые в применении интегрированные системы (пакеты программ) предназначенные для автоматизации автоматических и научных расчетов. Это MachCad, Derive, Machematica, Maple, MATLAB и т.д. Применение этих пакетов требует от пользователя знания математики.
MATLAB является надежной апробированной системой рассчитанной на решение математических задач с представлением данных в матричной форме. Система MATLAB широко распространена в России, в СНГ и за рубежом. MATLAB был разработан C.В.Молером ( в 1970 гг), вначале использовался на больших ЭВМ, затем был подработан для персональных компьютеров. MATLAB является расширяемой системой, которую можно приспособить для решения нужного класса задач. Для неё разработаны десятки пакетов расширения – от пакета символьной математики Symbolic до пакета имитационного моделирования блочно заданных систем Simulink.
Круг пользователей системы:
1. инженеры связи, инженеры проектировщики;
2. разработчики новых устройств;
3. студенты, аспиранты, научные работники;
4. физики, математики, и т.д..
Система может применяться в любой области науки и техники, содержит удобные средства для электро и радиотехнических расчетов, т.е. позволяет производить операции с комплексными числами, матрицами, векторами и полиномами, обрабатывать данные, анализировать сигналы, производить цифровую фильтрацию. MATLAB – MATrixLABoratory (матричная лаборатория). Система MATLAB может использоваться для арифметических и алгебраических действий, а также выполнять действия с матрицами, вычислять собственные значения векторов, решать системы линейных уравнений и т.д.
Основное преимущество системы - это возможность ее модификации и приспосабливания к конкретным задачам пользователя. В MATLAB можно ввести любую новую команду, оператор или функцию.
Система MATLAB имеет входной язык, напоминающий Basic, но не использует объявления. Базовый набор слов:
§ специальные знаки;
§ знаки арифметических и логических операций;
§ арифметические, алгебраические, тригонометрические и некоторые специальные функции;
§ векторные и матричные функции;
§ функции быстрого преобразования Фурье;
§ операторы построения графиков в декартовой и полярной системах координат;
§ операторы построения трехмерных поверхностей.
Графики выводятся отдельно от текста. Система позволяет редактировать текст программ с помощью любого текстового редактора.
Запуск системы MATLAB