Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения »

Знания:

- определение первообразной функции;

- определение неопределенного интеграла;

- свойства неопределенного интеграла;

- таблицу неопределенных интегралов;

- методы интегрирования;

- свойства определенного интеграла;

- формулу Ньютона-Лейбница для вычисления определенных интегралов;

- основные понятия теории дифференциальных уравнений.

Умения:

- находить неопределенный интеграл различными методами;

- применять формулу Ньютона-Лейбница для вычисления определенного интеграла;

- находить общее и частное решение дифференциальных уравнений.

Задание 1

Вычислить следующие интегралы.

а) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , б) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , в) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ,

г) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , д) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , е) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Решение.

а) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Для вычисления данного неопределенного интеграла применим метод непосредственного интегрирования. Преобразуем подынтегральное выражение и применим свойства неопределенного интеграла.

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

б) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Для вычисления данного неопределенного интеграла применим метод интегрирования по частям. Согласно данного метода подынтегральное выражение следует разбить на две части : функцию Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и дифференциал – Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

в) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Для вычисления данного неопределенного интеграла применим метод интегрирования по частям. Согласно данному методу подынтегральное выражение следует разбить на две части: функцию Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и дифференциал – Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

г) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Для вычисления данного неопределенного интеграла применим метод интегрирования по частям. Согласно данному методу подынтегральное выражение следует разбить на две части: функцию Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и дифференциал – Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

д) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Для вычисления данного определенного интеграла применим метод подстановки. Согласно данному методу, необходимо ввести новую переменную так, чтобы свести подынтегральное выражение к одному из табличных интегралов, при этом обязательно произвести пересчет пределов интегрирования.

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

е) Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Для вычисления данного определенного интеграла применим метод подстановки. Согласно данному методу, необходимо ввести новую переменную так, чтобы свести подынтегральное выражение к одному из табличных интегралов, при этом обязательно произвести пересчет пределов интегрирования.

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Задание 2.

а) Вычислить площадь фигуры, ограниченной линиями: Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Решение.

Построим фигуру, площадь которой требуется найти (рис.1).

Графиком функции Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru является парабола, ветви которой направлены вверх, так как Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , а вершина находится в точке Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , где

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ; Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Таким образом, Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Найдём точки пересечения параболы с осью Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru :

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ; Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ;

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Парабола пересекает ось абсцисс в точках Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Для построения прямой, заданной уравнением Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , достаточно указать координаты двух её точек:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru
Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Найдём точку пересечения прямой и параболы. Для этого решим совместно систему уравнений:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Рис. 1

Итак, прямая пересекает параболу в точках Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .Площадь заштрихованной фигуры Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru найдём по формуле

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ,

где

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ,

так как прямая является верхней границей заштрихованной области, а парабола − нижней.

Итак,

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru кв. ед.

Ответ:Площадь фигуры, ограниченной линиями Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , равна Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru кв. ед.

б) Вычислить объём тела, образованного вращением вокруг оси Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru фигуры, ограниченной линиями: Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Решение.

Построим данные линии в системе координат:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Рис. 2

Объём тела, образованного вращением вокруг оси Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru фигуры, ограниченной кривой Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , определяется по формуле:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ,

Выразим Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru через Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru в уравнениях заданных кривых:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru . Решая систему уравнений Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru получим пределы интегрирования Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Тогда

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru куб. ед.

Ответ:Объём тела, образованного вращением вокруг оси Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru фигуры, ограниченной линиями Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru равен 0,3 Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru куб. ед.

в) Вычислить объём тела, образованного вращением вокруг оси Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru фигуры, ограниченной линиями: Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Решение.

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Рис.3

Объём тела, образованного вращением вокруг оси Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru фигуры, ограниченной кривой Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , определяется по формуле:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ,

где Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Выразим Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru через Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru в уравнениях заданных кривых:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Пределы интегрирования Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru найдём, решив систему уравнений:

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тогда

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru куб. ед.

Ответ:Объём тела, образованного вращением вокруг оси Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru фигуры, ограниченной линиями Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru и Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , равен Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru куб. ед

г) Какую работу нужно затратить, чтобы растянуть пружину на 0,1 м, если сила 200 Н растягивает пружину на 0,05 м?

Решение.

По закону Гука упругая сила, растягивающая пружину, про­порциональна этому растяжению Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , т. е. Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , где Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru — коэффициент пропорциональности. Согласно условию задачи, сила Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru растяги­вает пружину на Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru м; следовательно, Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , откуда Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Искомая работа на основании формулы Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru равна

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

д) Найти путь, пройденный телом за 5 секунд от начала движения, если скорость тела Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru (м/с).

Решение.

Если Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru (м/с), то путь, пройденный телом от на­чала движения ( Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru ) до конца 5-й секунды, равен

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Задание 3

Найти общее решение дифференциального уравнения первого порядка

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Решение.

Разделив в этом уравнении переменные и интегрируя обе части, получим

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Задание 4

Найти общее и частное решение дифференциального уравнения

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru , Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru .

Решение.

Прежде чем найти частное решение данного дифференциального уравнения , найдем общее решение. Для этого представим производную функции Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru в виде частного аргумента Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru . Получим

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru –общее решение

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru

Тема: «Неопределенный и определенный интегралы. Применение определенного интеграла к решению прикладных задач. Дифференциальные уравнения » - student2.ru –частное решение

Приднестровский государственный университет

им. Т.Г. Шевченко

Физико-математический факультет

Кафедра «Алгебры, геометрии и методики преподавания математики»

Лабораторная работа №5

Вариант №___

Наши рекомендации