Стоячие волны в длинных линиях
Как было показано выше, решение уравнений длинной линии можно представить в виде суммы прямой и обратной волн. В результате их наложения в цепях с распределенными параметрами возникают стоячие волны.
Рассмотрим два предельных случая: ХХ и КЗ в линии без потерь, когда поглощаемая приемником активная мощность равна нулю.
При ХХ на основании уравнений (17) и (18) имеем
и ,
откуда для мгновенных значений напряжения и тока можно записать
; | (19) |
. | (20) |
Последние уравнения представляют собой уравнения стоячих волн, являющихся результатом наложения прямой и обратной волн с одинаковыми амплитудами.
При ХХ в соответствии с (19) и (20) в точках с координатами , где - целое число, имеют место максимумы напряжения, называемые пучностями,и нули тока, называемые узлами. В точках с координатами пучности и узлы напряжения и тока меняются местами (см. рис. 2). Таким образом, узлы и пучности неподвижны, и пучности одной переменной совпадают с узлами другой и наоборот.
При КЗ на основании уравнений (17) и (18)
и ,
откуда для мгновенных значений можно записать
т.е. и в этом случае напряжение и ток представляют собой стоячие волны, причем по сравнению с режимом ХХ пучности и узлы напряжения и тока соответственно меняются местами.
Поскольку в узлах мощность тождественно равна нулю, стоячие волны в передаче энергии вдоль линии не участвуют. Ее передают только бегущие волны. Чем сильнее нагрузка отличается от согласованной, тем сильнее выражены обратные и, следовательно, стоячие волны. В рассмотренных предельных случаях ХХ и КЗ имеют место только стоячие волны, и мощность на нагрузке равна нулю.
Литература
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Теоретическиеосновы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
Контрольные вопросы и задачи
- Что называется линией без искажений? Как соотносятся первичные параметры в такой линии?
- Запишите уравнения линии конечной длины для случаев, когда заданы ее входные напряжение и ток и когда выходные.
- Как определяются параметры цепи с распределенными параметрами?
- Что называется линией без потерь? Какими свойствами она обладает?
- При каких условиях в линии образуются стоячие волны?
- Определить напряжение и ток на входе трехфазной линии электропередачи длиной , если , , . Параметры линии на фазу: , , , . Определить КПД линии.
Ответ: ; ; .
- Определить входное сопротивление линии без потерь длиной в четверть волны, нагруженной на емкостную нагрузку при частоте 100 МГц. Волновое сопротивление .
Ответ: .
- Однородная двухпроводная линия без искажений имеет волновое сопротивление , скорость распространения волны и затухание 1,5 Неп на 100 км. Определить первичные параметры линии, и также ее КПД при длине и нагрузке, равной волновой.
Ответ: ; ; ; ; .
- Линия без потерь нагружена на емкостное сопротивление, численно равное волновому. , . В конце линии . Найти на расстоянии 1м от конца линии.
Ответ: .
- Линия без потерь длиной разомкнута на конце. , в начале линии . Найти в середине линии.
Ответ: .
Входным сопротивлением длинной линии (цепи с распределенными параметрами) называется такое сосредоточенное сопротивление, подключение которого вместо линии к зажимам источника не изменит режим работы последнего. В общем случае для линии с произвольной нагрузкой для входного сопротивления можно записать
Полученное выражение показывает, что входное сопротивление является функцией параметров линии и , ее длины и нагрузки . При этом зависимость входного сопротивления от длины линии, т.е. функция , не является монотонной, а носит колебательный характер, обусловленный влиянием обратной (отраженной) волны. С ростом длины линии как прямая, так соответственно и отраженная волны затухают все сильнее. В результате влияние последней ослабевает и амплитуда колебаний функции уменьшается. При согласованной нагрузке, т.е. при , как было показано ранее, обратная волна отсутствует, что полностью соответствует выражению (1), которое при трансформируется в соотношение . Такой же величиной определяется входное сопротивление при . При некоторых значениях длины линии ее входное сопротивление может оказаться чисто активным. Длину линии, при которой вещественно, называют резонансной. Как и в цепи с сосредоточенными параметрами, резонанс наиболее ярко наблюдается при отсутствии потерь. Для линии без потерь на основании (1) можно записать
Из (2) для режимов холостого хода (ХХ) и короткого замыкания (КЗ), т.е. случаев, когда потребляемая нагрузкой активная мощность равна нулю, соответственно получаем:
Исследование характера изменения в зависимости от длины линии на основании (3) показывает, что при по модулю изменяется в пределах и имеет емкостный характер, а при - в пределах и имеет индуктивный характер. Такое чередование продолжается и далее через отрезки длины линии, равные четверти длины волны (см. рис. 1,а). В соответствии с (4) аналогичный характер, но со сдвигом на четверть волны, будет иметь зависимость при КЗ (см. рис. 1,б). Точки, где , соответствуют резонансу напряжений, а точки, где , - резонансу токов. Таким образом, изменяя длину линии без потерь, можно имитировать емкостное и индуктивное сопротивления любой величины. Поскольку длина волны есть функция частоты, то аналогичное изменение можно обеспечить не изменением длины линии, а частоты генератора. При некоторых частотах входное сопротивление цепи с распределенными параметрами также становится вещественным. Такие частоты называются резонансными.Таким образом, резонансными называются частоты, при которых в линии укладывается целое число четвертей волны. Наши рекомендации
|